
1 | H i l l

Adafruit Motor Shield - Part 1

Software Serial Peripheral Interface (SPI)

This article is the first of a two part series on the AdaFruit Motor Shield. This article focuses on a

Software implementation of the Serial Peripheral Interface (SPI). The second article in the

series covers Fast Pulse Width Modulation.

The AVR Microcontroller and Embedded Systems using Assembly and C)

by Muhammad Ali Mazidi, Sarmad Naimi, and Sepehr Naimi

Chapter 5: Arithmetic, Logic Instructions, and Programs

Section 5.4: Rotate and Shift Instructions and Data Serialization

Chapter 7: AVR Programming in C

Section 7.5 Data Serialization in C

Chapter 11: AVR Serial Port Programming in Assembly and C

Chapter 17: SPI Protocol and MAX7221 Display Interfacing

Section 17.1 SPI Bus Protocol

ATMEL 8-bit AVR Microcontroller with 4/8/16/32K Bytes In-System Programmable Flash

http://www.atmel.com/dyn/resources/prod_documents/doc8161.pdfasd Chapter 21 “2-wire

Serial Interface”

http://www.google.com/url?q=http%3A%2F%2Fwww.atmel.com%2Fdyn%2Fresources%2Fprod_documents%2Fdoc8161.pdfasd&sa=D&sntz=1&usg=AFQjCNFDy8TiKNSViE9c-TCFWF17l3njaQ

2 | H i l l

Table of Contents

References

Understanding the Adafruit Motor Shield

Basic DC Motor Control

The Motor Drivers and Shift Register

Ports

Defining the Shift Register Inputs

AFMotorController or Software SPI

AF_DCMotor or Forward and Backward

References
1. ATMEL 8-bit AVR Microcontroller with 4/8/16/32K Bytes In-System Programmable Flash

http://www.atmel.com/dyn/resources/prod_documents/doc8161.pdfasd Chapter 18 “SPI

- Serial Peripheral Interface”

2. ATmega328P Serial Communications (located in the EE346 Lectures folder)

3. Adafruit Motor Shield Arduino User Guide pages 4 and 17

Understanding the Adafruit Motor Shield
This document is based on an article on the Adafruit Motor Shield written by Michael Koehrsen.

Original material is used by permission.

I've recently been working on a small robotics project using the Arduino platform with the

Adafruit motor shield. I'm an experienced applications programmer but a complete novice at

electronics and embedded programming, so I find it challenging to understand how the

hardware design and the code relate to each other. I've been going through the motor shield

schematic and the code library to try to understand them both in detail, and I thought it might be

helpful to other beginning Arduinists if I were to write up what I've figured out so far. At least for

now I will focus on DC motor control because that's what I've been working on and have learned

the most about.

Addendum

When Adafruit initially wrote the C++ code for the Motor Shield, they did it from the

perspective of an AVR microcontroller. They later updated the code to take full advantage of

the Arduino sketch language, leaving the original C++ code as comments. The initial draft of

this article was written to explain this earlier code version. This is fortuitous, because the

Arduino sketch language adds one more layer of abstraction, which is removed by studying

the comments and not the new sketch version.

http://www.google.com/url?q=http%3A%2F%2Fwww.atmel.com%2Fdyn%2Fresources%2Fprod_documents%2Fdoc8161.pdfasd&sa=D&sntz=1&usg=AFQjCNFDy8TiKNSViE9c-TCFWF17l3njaQ
http://www.google.com/url?q=http%3A%2F%2Fwww.csulb.edu%2F%257Ehill%2Fee346%2FLectures%2F&sa=D&sntz=1&usg=AFQjCNH_NRwYgKJiOZi4K7JioRMU1_ee9Q
http://www.google.com/url?q=http%3A%2F%2Fwww.csulb.edu%2F%257Ehill%2Fee346%2FLectures%2F&sa=D&sntz=1&usg=AFQjCNH_NRwYgKJiOZi4K7JioRMU1_ee9Q
http://www.google.com/url?q=http%3A%2F%2Fwww.robotshop.ca%2Fcontent%2FPDF%2Fadafruit-motor-shield-arduino-user-guide.pdf&sa=D&sntz=1&usg=AFQjCNEq2kfGRLFUevfJTUrl28RZ3vHOdw
http://www.google.com/url?q=http%3A%2F%2Farduino.cc%2F&sa=D&sntz=1&usg=AFQjCNFd1LrN_WhmZJwz-UpcEh-RAcgVbg
http://www.google.com/url?q=http%3A%2F%2Farduino.cc%2F&sa=D&sntz=1&usg=AFQjCNFd1LrN_WhmZJwz-UpcEh-RAcgVbg
http://www.google.com/url?q=http%3A%2F%2Fwww.ladyada.net%2Fmake%2Fmshield%2F&sa=D&sntz=1&usg=AFQjCNGa4HXKsPyPrlGEfE6ksS76kP-srQ
http://www.google.com/url?q=http%3A%2F%2Fwww.ladyada.net%2Fmake%2Fmshield%2F&sa=D&sntz=1&usg=AFQjCNGa4HXKsPyPrlGEfE6ksS76kP-srQ
http://www.google.com/url?q=http%3A%2F%2Fwww.ladyada.net%2Fmake%2Fmshield%2F&sa=D&sntz=1&usg=AFQjCNGa4HXKsPyPrlGEfE6ksS76kP-srQ
http://www.google.com/url?q=http%3A%2F%2Fwww.ladyada.net%2Fmake%2Fmshield%2Fdownload.html&sa=D&sntz=1&usg=AFQjCNES61KWBLraS4KHO7gd5EAoQ9z70g
http://www.google.com/url?q=http%3A%2F%2Fwww.ladyada.net%2Fmake%2Fmshield%2Fdownload.html&sa=D&sntz=1&usg=AFQjCNES61KWBLraS4KHO7gd5EAoQ9z70g

3 | H i l l

It is unfortunate that Adafruit was unable to use the Serial Peripheral Interface (SPI) subsystem

of the ATmega328P, opting instead to completely mimic its function in software. The problem

may have resulted from a reluctance on Adafruit’s part to lose the pulse-width-modulation output

PWM OC2A on pin 23 (PB3), multiplexed with MOSI.

Basic DC Motor Control
Let's set aside speed control (Part 2) for a moment and first walk through how the motors are

turned on and off.

The Motor Drivers and Shift Register
The motor shield can control up to four DC motors using two L293D dual H-bridge motor driver

ICs. You can read the datasheet for details. As shown in Figure 1, each IC has four digital

inputs which control two DC motors bidirectionally. The inputs are in pairs, and each pair

controls a motor. For example, if pin 2 is set high and pin 7 is set low, motor 1 is turned on. If

the inputs are reversed, the motor is again on but its direction of rotation is reversed, and if both

are set low then the motor is off. There are other possible configurations but this is the one

supported by the motor shield.

Figure 1 L293D dual H-bridge motor driver IC

So obviously the thing to do is wire eight pins from the Arduino to the eight inputs on the two

ICs, right? That's what I imagined at first, but it's WRONG!! Pins are a scarce resource, and the

motor shield design makes an extra effort to conserve them. The inputs to the motor drivers are

http://www.google.com/url?q=http%3A%2F%2Ffocus.ti.com%2Flit%2Fds%2Fsymlink%2Fl293.pdf&sa=D&sntz=1&usg=AFQjCNEoZhrTmcFUJOqdIOtUgCJI56jy9A
http://www.google.com/url?q=http%3A%2F%2Ffocus.ti.com%2Flit%2Fds%2Fsymlink%2Fl293.pdf&sa=D&sntz=1&usg=AFQjCNEoZhrTmcFUJOqdIOtUgCJI56jy9A
http://www.google.com/url?q=http%3A%2F%2Ffocus.ti.com%2Flit%2Fds%2Fsymlink%2Fl293.pdf&sa=D&sntz=1&usg=AFQjCNEoZhrTmcFUJOqdIOtUgCJI56jy9A
http://www.google.com/url?q=http%3A%2F%2Ffocus.ti.com%2Flit%2Fds%2Fsymlink%2Fl293.pdf&sa=D&sntz=1&usg=AFQjCNEoZhrTmcFUJOqdIOtUgCJI56jy9A

4 | H i l l

actually wired to the outputs of a 74HCT595N 8-bit shift register (Figure 2). This IC lets you feed

in bits serially, but it then presents them as parallel outputs. It's controlled by four digital inputs,

so effectively it lets you control eight inputs to the motor drivers (thus four motors) using four

pins of the Arduino.

At this point we can start to look at code. Here are some constants defined in AFMotor.h:

/* IC3 bit (source: 74HC595 datasheet) */
#define MOTOR1_A // QC 2
#define MOTOR1_B // QD 3
#define MOTOR2_A // QB 1
#define MOTOR2_B // QE 4
#define MOTOR4_A // QF 5
#define MOTOR4_B // QH 7
#define MOTOR3_A // QA 0
#define MOTOR3_B // QG 6

Clearly, MOTOR1_A and MOTOR1_B have to do with controlling motor 1 bidirectionally,

MOTOR2_A and MOTOR2_B are related to motor 2, etc. But what do the values mean? It turns

out these are the bit numbers in the output of the shift register, as you can see in this detail of

the schematic:

Figure 2 74HC595

The pins labeled QA through QH are the parallel output pins, and you can think of them as bits

0 through 7. The numbers immediately to the right of the IC are pin numbers rather than bit

numbers, although they mostly coincide. QA is bit zero, pin 15. The datasheet calls them Q0

through Q7 so I'm not sure why the schematic uses a different convention.

As you can see, Motor 1 is controlled by bits 2 and 3, Motor 2 by bits 1 and 4, etc.

http://www.google.com/url?q=http%3A%2F%2Fwww.nxp.com%2Facrobat_download%2Fdatasheets%2F74HC_HCT595_4.pdf&sa=D&sntz=1&usg=AFQjCNGHiDfguCBjQoBZKkOkAFF-trg4KQ
http://www.google.com/url?q=http%3A%2F%2Fwww.nxp.com%2Facrobat_download%2Fdatasheets%2F74HC_HCT595_4.pdf&sa=D&sntz=1&usg=AFQjCNGHiDfguCBjQoBZKkOkAFF-trg4KQ
http://www.google.com/url?q=http%3A%2F%2Fwww.ladyada.net%2Fimages%2Fmshield%2Fmshieldv1-schem.png&sa=D&sntz=1&usg=AFQjCNEPNChm1QfUl-tUB7NlOnVjJSQw2w
http://www.google.com/url?q=http%3A%2F%2Fwww.ladyada.net%2Fimages%2Fmshield%2Fmshieldv1-schem.png&sa=D&sntz=1&usg=AFQjCNEPNChm1QfUl-tUB7NlOnVjJSQw2w
http://www.google.com/url?q=http%3A%2F%2Fwww.ladyada.net%2Fimages%2Fmshield%2Fmshieldv1-schem.png&sa=D&sntz=1&usg=AFQjCNEPNChm1QfUl-tUB7NlOnVjJSQw2w

5 | H i l l

The pins shown on the left in Figure 2 "74HC595" are the four input pins plus reset and output

enable. Adafruit's naming convention is at variance with that provided in the 74HCT595N 8-bit

shift register Philips datasheet. Here is a cross-reference table

Pin Adafruit 74HC595 Description

14 DIR_SER DS serial data input

11 DIR_CLK SH_CP shift register clock input

12 DIR_LATCH ST_CP storage register clock input

13 DIR_EN /OE output enable (active LOW)

10 SCL /MR master reset (active LOW) wired to Vcc

It takes some study of the 74HC595 datasheet to understand the inputs, so here's a Logic

Diagram (Figure 6 in the Datasheet) followed by brief description of each control pint. If you do

not understand how a shift register works, here is a nice Serial-in, parallel-out shift register

tutorial.

Figure 3 74HC595 Logic Diagram

● DIR_EN (/OE) - The output enable pin, (/ = active low); it has a pull-up resistor to disable

the outputs until an AFMotorController is created in the code, as we'll see.

● DIR_SER (DS) - the serial data input.

● DIR_CLK (SH_CP) - A rising edge on this input causes the data bit to be shifted in and

all bits shifted internally.

● DIR_LATCH (ST_CP) - A rising edge causes the internally-stored data bits to be

presented to the parallel outputs. This allows an entire byte to be shifted in without

causing transient changes in the parallel outputs.

Almost ready to look at more code! But first a brief digression.

http://www.google.com/url?q=http%3A%2F%2Fwww.nxp.com%2Facrobat_download%2Fdatasheets%2F74HC_HCT595_4.pdf&sa=D&sntz=1&usg=AFQjCNGHiDfguCBjQoBZKkOkAFF-trg4KQ
http://www.google.com/url?q=http%3A%2F%2Fwww.nxp.com%2Facrobat_download%2Fdatasheets%2F74HC_HCT595_4.pdf&sa=D&sntz=1&usg=AFQjCNGHiDfguCBjQoBZKkOkAFF-trg4KQ
http://www.google.com/url?q=http%3A%2F%2Fwww.nxp.com%2Facrobat_download%2Fdatasheets%2F74HC_HCT595_4.pdf&sa=D&sntz=1&usg=AFQjCNGHiDfguCBjQoBZKkOkAFF-trg4KQ
http://www.google.com/url?q=http%3A%2F%2Fwww.allaboutcircuits.com%2Fvol_4%2Fchpt_12%2F4.html&sa=D&sntz=1&usg=AFQjCNGTMxyhuQZLL1eEJcWrQgTSPUUz1Q

6 | H i l l

Ports
Arduino tutorials like Ladyada's teach you how to read and write pins one at a time using

digitalRead and digitalWrite, but it turns out there's also a way to read and write them in

groups, called "ports". You should definitely read Port Registers for a non-technical description

of the general I/O ports of the ATmega328P.

To go between the ATmega328P and Arduino naming conventions use the Arduino 2009

schematic and Figure 3.

Figure 4 ATmega 328P Pin-out to the Arduino Duemilanove Digital and Analog Pin-out

Here are the salient points:

● PORTD bits 0 to 7 map to Arduino Digital pins 0 to 7, but you should never modify bits 0

and 1. These pins are reserved for serial communications (TXD, RXD).

● PORTB bits 0 to 5 map to digital pins 8 to 13; the two high-order bits 6 and 7 are wired

to the crystal oscillator inputs XTAL1 and XTAL2 respectively and are therefore not

available.

● PORTC bits 0 to 5 map to analog pins 1 to 6; PortC bit 7 is not supported by the

ATmega328P. The Adafruit motor shield does not use these I/O bits, but they have

made them available to us. These are great for adding sensors to your project. The pins

are wired to Jumper JP5 as shown in the schematic and Figure 5. Jumper JP2 in Figure

3, is incorrectly labeled and should be J2 as shown in Figure 4. You can find them on

your board labeled A0-5.

http://www.google.com/url?q=http%3A%2F%2Fwww.ladyada.net%2Flearn%2Farduino%2F&sa=D&sntz=1&usg=AFQjCNHF41v1FYn4Jcw2mI_Uhr3GOpRaWg
http://www.google.com/url?q=http%3A%2F%2Fwww.ladyada.net%2Flearn%2Farduino%2F&sa=D&sntz=1&usg=AFQjCNHF41v1FYn4Jcw2mI_Uhr3GOpRaWg
http://www.google.com/url?q=http%3A%2F%2Fwww.arduino.cc%2Fen%2FReference%2FPortManipulation&sa=D&sntz=1&usg=AFQjCNHZLchAn-JG4Hdlw1I70UEwOp5GkQ
http://www.google.com/url?q=http%3A%2F%2Fwww.arduino.cc%2Fen%2FReference%2FPortManipulation&sa=D&sntz=1&usg=AFQjCNHZLchAn-JG4Hdlw1I70UEwOp5GkQ
http://www.google.com/url?q=http%3A%2F%2Farduino.cc%2Fen%2Fuploads%2FMain%2Farduino-duemilanove-schematic.pdf&sa=D&sntz=1&usg=AFQjCNEQ4EN61YYhhD3iQgcEIqVKTXxybw
http://www.google.com/url?q=http%3A%2F%2Farduino.cc%2Fen%2Fuploads%2FMain%2Farduino-duemilanove-schematic.pdf&sa=D&sntz=1&usg=AFQjCNEQ4EN61YYhhD3iQgcEIqVKTXxybw
http://www.google.com/url?q=http%3A%2F%2Farduino.cc%2Fen%2Fuploads%2FMain%2Farduino-duemilanove-schematic.pdf&sa=D&sntz=1&usg=AFQjCNEQ4EN61YYhhD3iQgcEIqVKTXxybw
http://www.google.com/url?q=http%3A%2F%2Fwww.ladyada.net%2Fimages%2Fmshield%2Fmshieldv1-schem.png&sa=D&sntz=1&usg=AFQjCNEPNChm1QfUl-tUB7NlOnVjJSQw2w
http://www.google.com/url?q=http%3A%2F%2Fwww.ladyada.net%2Fimages%2Fmshield%2Fmshieldv1-schem.png&sa=D&sntz=1&usg=AFQjCNEPNChm1QfUl-tUB7NlOnVjJSQw2w

7 | H i l l

Figure 5 AdaFruit Motor Shield Jumper J2 (incorrectly labeled JP2)

For a complete cross-reference table for mapping the tower of babel names used by Atmel,

Arduino, Adafruit, and Philips Semiconductor see Table 2.1 Microcontroller Resource Map -

Motors our Reference System Document.

There are three registers corresponding to each port as described in the ATmega328P

Datasheet and Peripherals AVR. Each Port register has a unique address as defined in the

iom328p.h C header file (arduino-00nn\hardware\tools\avr\avr\include\avr\, where nn = the

version number) and shown in Figure 6.

Figure 6 ATmega328P General I/O Port Addresses

Here are the salient points:

● DDRB/DDRD/DDRC - these are hardware registers that control whether each pin in the

port is an input or output. 1 means output. Assigning a value to one of these is like

calling pinMode once for each pin in the port.

● PORTB/PORTD/PORTC - If you assign a one to them, it's like doing a digitalWrite

on each pin.

● PINB/PIND/PINC - if you read one of these, it's like doing a digitalRead on each pin

in the port. You should think of this Port as read only. Writing to this port is possible but

not recommended for the novice. The inquisitive types can find out what will happen by

reading Section 13 “I/O-Ports” in the ATmega328P datasheet (you will be surprised

when you find the answer).

When I say setting DDRB is like calling pinMode a bunch of times, I mean it has the same end

result. However, it sets the mode on all the pins all at once so it's inherently faster than multiple

calls to pinMode. The same remark applies to PORTB/PIND as opposed to digitalWrite

and digitalRead.

http://www.google.com/url?q=http%3A%2F%2Fwww.atmel.com%2Fdyn%2Fresources%2Fprod_documents%2F8271.pdf&sa=D&sntz=1&usg=AFQjCNGZ4cybCFxzLqJSYTmBbzKNX8hEaQ
http://www.google.com/url?q=http%3A%2F%2Fwww.atmel.com%2Fdyn%2Fresources%2Fprod_documents%2F8271.pdf&sa=D&sntz=1&usg=AFQjCNGZ4cybCFxzLqJSYTmBbzKNX8hEaQ
http://www.google.com/url?q=http%3A%2F%2Fwww.atmel.com%2Fdyn%2Fresources%2Fprod_documents%2F8271.pdf&sa=D&sntz=1&usg=AFQjCNGZ4cybCFxzLqJSYTmBbzKNX8hEaQ
http://www.google.com/url?q=http%3A%2F%2Fwww.csulb.edu%2F~hill%2Fee346%2FLectures%2FATmega328P%2520GPIO.pdf&sa=D&sntz=1&usg=AFQjCNGRGv8rN8_tzXIu4J1etomS7qXLGw
http://www.google.com/url?q=http%3A%2F%2Fwww.atmel.com%2Fdyn%2Fresources%2Fprod_documents%2F8271.pdf&sa=D&sntz=1&usg=AFQjCNGZ4cybCFxzLqJSYTmBbzKNX8hEaQ
http://www.google.com/url?q=http%3A%2F%2Fwww.atmel.com%2Fdyn%2Fresources%2Fprod_documents%2F8271.pdf&sa=D&sntz=1&usg=AFQjCNGZ4cybCFxzLqJSYTmBbzKNX8hEaQ

8 | H i l l

Defining the Shift Register Inputs
Okay, finally we can understand this fragment from AFMotor.h:

#define LATCH 4
#define LATCH_DDR DDRB
#define LATCH_PORT PORTB

#define CLK_PORT PORTD
#define CLK_DDR DDRD
#define CLK 4

#define ENABLE_PORT PORTD
#define ENABLE_DDR DDRD
#define ENABLE 7

#define SER 0
#define SER_DDR DDRB
#define SER_PORT PORTB

// Arduino pin names
#define MOTORLATCH 12
#define MOTORCLK 4
#define MOTORENABLE 7
#define MOTORDATA 8

Clearly these five groups of #define statements correspond one-to-one with the inputs to the

shift register, and specifically they define the relationship between ATmega328P Port bits,

Arduino pins, and shift register inputs (see Reference System Desgin Table 2.1 Microcontroller

Resource Map - Motors for details) .

Table 1 AdaFruit Motor Shield to ATmega328P to Arduino

Shift register input Port Bit # of port Arduino digital pin #

DIR_LATCH B 4 12

DIR_CLK D 4 4

DIR_EN D 7 7

DIR_SER B 0 8

We'd better check this against the schematic and make sure we're understanding it correctly:

9 | H i l l

Figure 7 Adafruit Motor Shield signals to Arduino Duemilanove Jumper Pin-out

J1 corresponds to digital pins 0-7, and J3 to pins 8-14 (which you can verify on the Arduino

schematic), so it looks like the schematic and the code line up.

10 | H i l l

AFMotorController or Software SPI

The mechanics of pushing values out to the shift register are encapsulated in a C++ class

named AFMotorController. There is an instance of this class declared in AFMotor.cpp

(arduino-00nn\hardware\libraries\AFMotor\, where nn = the version number); this instance is

used by the classes AF_DCMotor and AF_Stepper.

AFMotorController declares two member functions (i.e., methods) enable() and

latch_tx(). The latch_tx() function is responsible for updating the outputs of the shift

register with the bits of the global variable latch_state, which is declared as:

static uint8_t latch_state;

Here's the body of latch_tx() with pseudocode comments added by me:

/*
 Send data located in 8-bit variable latch_state to
 the 74HC595 on the Motor Shield.
*/
void AFMotorController::latch_tx(void) {
 uint8_t i;

 //LATCH_PORT &= ~_BV(LATCH);
 digitalWrite(MOTORLATCH, LOW); // - Output register clock low

 //SER_PORT &= ~_BV(SER);
 digitalWrite(MOTORDATA, LOW); // - Serial data bit = 0

 for (i=0; i<8; i++) { // - Shift out 8-bits
 //CLK_PORT &= ~_BV(CLK);
 digitalWrite(MOTORCLK, LOW); // - Shift clock low

 if (latch_state & _BV(7-i)) { // - Is current bit of
 //SER_PORT |= _BV(SER); latch_state == 1
 digitalWrite(MOTORDATA, HIGH); // - Yes, serial data bit = 1
 } else {
 //SER_PORT &= ~_BV(SER);
 digitalWrite(MOTORDATA, LOW); // - No, serial data bit = 0
 }
 //CLK_PORT |= _BV(CLK);
 digitalWrite(MOTORCLK, HIGH); // - Shift clock high, rising edge
 } // shift bit into shift register
 //LATCH_PORT |= _BV(LATCH);
 digitalWrite(MOTORLATCH, HIGH); // - Output register clock high, rising
} // edge sends the stored bits to the
 // output register.

This function looks rather cryptic at first glance, but the key is that _BV(i) is a macro which

evaluates to a byte having only the i th bit set. It's defined in avr/str_defs.h as:

#define _BV(bit) (1 << (bit))

Knowing that, you can easily work out how the following two statements set a single bit of

SER_PORT to high and low respectively. The same idiom is used everywhere in this code so

11 | H i l l

it's worthwhile to think through it if you're not used to doing bit manipulations.

SER_PORT |= _BV(SER);

SER_PORT &= ~_BV(SER);

The enable() function initializes the ports, then clears and enables the shift register outputs.

Until the outputs are enabled, they are in the high impedance state, i.e. effectively turned off.

This function is simple, so here it is verbatim (including original comments).

/*
 Configure DDR Registers B and D bits assigned to
 the input of the 74HC595 on the Motor Shield. Output
 all zeros and enable outputs.
*/

void AFMotorController::enable(void) {
 // setup the latch
 /*
 LATCH_DDR |= _BV(LATCH);
 ENABLE_DDR |= _BV(ENABLE);
 CLK_DDR |= _BV(CLK);
 SER_DDR |= _BV(SER);
 */
 pinMode(MOTORLATCH, OUTPUT);
 pinMode(MOTORENABLE, OUTPUT);
 pinMode(MOTORDATA, OUTPUT);
 pinMode(MOTORCLK, OUTPUT);

 latch_state = 0;

 latch_tx(); // "reset"

 //ENABLE_PORT &= ~_BV(ENABLE); // enable the chip outputs!
 digitalWrite(MOTORENABLE, LOW);
}

The for loop implements the following waveform programmatically. You may recognize this

waveform. it is the same one in the SPI Serial Communications document.

12 | H i l l

AF_DCMotor or Forward and Backward

As described in the motor shield library documentation, you control a motor by instantiating an

AF_DCMotor object with the appropriate motor number (1 through 4), then use the run()

function to turn the motor on and off. AF_DCMotor also has a setSpeed() function, but we'll

return to that in the next section when we look at speed control.

Here's the run() function with a few comments from me. This function breaks naturally into

two sections; one in which we figure out which shift register outputs need to be set, and one in

which we set them.

void AF_DCMotor::run(uint8_t cmd) {
 uint8_t a, b;

 /* Section 1: choose two shift register outputs based on which
 * motor this instance is associated with. motornum is the
 * motor number that was passed to this instance's constructor.
 */
 switch (motornum) {
 case 1:
 a = MOTOR1_A; b = MOTOR1_B; break;
 case 2:
 a = MOTOR2_A; b = MOTOR2_B; break;
 case 3:
 a = MOTOR3_A; b = MOTOR3_B; break;
 case 4:
 a = MOTOR4_A; b = MOTOR4_B; break;
 default:
 return;
 }

 /* Section 2: set the selected shift register outputs to high/low,
 * low/high, or low/low depending on the command. This is done
 * by updating the appropriate bits of latch_state and then
 * calling tx_latch() to send latch_state to the chip.
 */
 switch (cmd) {
 case FORWARD: // high/low
 latch_state |= _BV(a);
 latch_state &= ~_BV(b);
 MC.latch_tx();
 break;
 case BACKWARD: // low/high
 latch_state &= ~_BV(a);
 latch_state |= _BV(b);
 MC.latch_tx();
 break;
 case RELEASE: // low/low
 latch_state &= ~_BV(a);
 latch_state &= ~_BV(b);
 MC.latch_tx();
 break;
 }
}

http://www.google.com/url?q=http%3A%2F%2Fwww.ladyada.net%2Fmake%2Fmshield%2Fuse.html&sa=D&sntz=1&usg=AFQjCNH4GmeXU-lbK76uHxWJb-YWh0ifCA
http://www.google.com/url?q=http%3A%2F%2Fwww.ladyada.net%2Fmake%2Fmshield%2Fuse.html&sa=D&sntz=1&usg=AFQjCNH4GmeXU-lbK76uHxWJb-YWh0ifCA

