
1

Microcontroller Based Interface Design

Part 2

System Engineering the Rover

Table of Contents

1 Interfacing Sensors and Actuators

1.1 Reading

1.2 Introduction

2 Sensors

2.2 Digital Interface

2.2.1 Design Example: DIP Switch

2.2.2 Parallel Interface

2.3 Analog Interface

2.3.1 Design Example

2

2.3.2 Voltage Range and Electromagnetic Interference (EMI)

3 Actuators

3.1 Digital Interface

3.3 Motor and Pulse Width Modulation (PWM) Interface

3.3.1 Motor On/Off

3.3.2 Change Motor Direction

3.3.3 Change the Speed of a Motor

3.3.4 All The Above

3.3.5 Servos

4 Serial Interface

4.1 Universal Asynchronous Receiver/Transmitter (USART)

4.2 Serial Peripheral Interface (SPI)

4.3 Inter-Integrated Circuit (I2C)

5 Recovering I/O Resources

6 Rover Example

6.1 Sensors

6.2 Actuators

7 Rover with Arduino Nano Example

7.1 Scan / Tilt Platform

7.1.1 Sensors

7.1.2 Actuators

7.1.3 Serial Communication

7.2 Rover

7.2.1 Sensors

7.2.2 Actuators

7.2.3 Serial Communication

3

1 Interfacing Sensors and Actuators

1.1 Reading
● Microcontroller Interfacing Circuits by Revolution Education Ltd.

● For help with a specific interface, or just to look for ideas, visit the related Arduino

Forum.

● A detailed discussion of Pulse Width Modulation is beyond the scope of the document.

We will be covering PWM in more detail later in the semester. For now you may want to

read this nicely illustrated article: Working with Atmel AVR Microcontroller Basic Pulse

Width Modulation (PWM) Peripheral

1.2 Introduction
In Part 1 we developed a Resource Map for our rover (Table 1.0). In this section we look at how

sensors and actuators could be incorporated into the design of our rover. Specifically, we will

map our sensors and actuators to our I/O pins.

Table 1.0 Rover Resource Summary

Up To I/O Pin Names Sensor/Actuator Type

6 Analog (ADC0 to ADC5) Analog Sensors

10 GPIO (PC5-0, PB5, PB2, PB1, PD2) Digital (on/off) Sensors

10 GPIO (PC5-0, PB5, PB2, PB1, PD2) Digital (on/off) Actuators

2 PWM (PWM1A, PWM1B) PWM Controlled Motors

4 H-Bridge Channels (M1, M2, M3, M4) Bi-Directional PWM Controlled Motors

1 Serial Interface (SDA, SCL) I
2
C Sensors and/or Actuators

While Part 1 of this System Interface Design discussion was from the perspective of the

ATmega328P; Part 2 will be presented from the perspective of the I/O device.

A detailed discussion of the ATmega328P subsystems, along with the software required to run

them, is outside the scope of this document and will be covered in future lectures (hopefully).

http://www.picaxe.com/docs/picaxe_manual3.pdf
http://arduino.cc/forum/
http://arduino.cc/forum/
http://www.ermicro.com/blog/?p=1971
http://www.ermicro.com/blog/?p=1971

4

2 Sensors

2.2 Digital Interface
Sensors implementing a digital interface may be as simple as a micro-switch (on/off), DIP

switch, or as complex as a digital camera. Consequently, you always need to start with the

data sheet for your specific sensor(s).

2.2.1 Design Example: DIP Switch

A DIP switch is an example of a digital sensor which we could add to our design to allow our

rover to determine the mission phase upon reset. Specifically, in the initialization section of the

code the switch would be read and if zero the rover would begin mapping its surroundings and if

one the rover would begin executing the mission.

Working from the schematic of the device, we wire the four (4) Single Pole Double Throw

(SPDT) DIP switch(s) to the GPIO Pins (PC5-0, PB5, PB2, PB1, PD2) of the ATmega328P.

Figure 2.0 Two SPDT DIP Switches

5

Figure 2.1 SPST Switch Schematic

2.2.2 Parallel Interface

For our rover we are limited to no more than 10 digital inputs (see Table 1.0). Consequently,

while wiring 2 DIP switches to the ATmega328P is not a problem, while wiring a parallel device

with a large word size is not. For example an 8-bit A/D converter would consume 80% of our

available I/O resources. A much better solution would be an A/D converter that supports the I2C

interface. Here we could get a 12-bit A/D converter with no loss in pin count.

2.3 Analog Interface
Many sensors output an analog voltage, including our long and medium range IR sensors. The

ATmega328P has a single ADC subsystem whose input can come from up to 6 multiplexed

channels (ADC0 to ADC5). The reference design preserves all 6 of these analog channels.

From a practical standpoint, the term multiplexed means that although our design can support

up to 6 analog sensors, we can only read one at a time.

2.3.1 Design Example

As with all devices, start with a schematic.

6

Figure 2.3 Medium Range IR Sensor Block Diagram

From the block diagram it is seen that the interface of an IR sensor is a single analog wire. In

the absence of any other resource requirements, we are free to wire this sensor output to any

one of our six analog inputs (ADC0 to ADC5).

2.3.2 Voltage Range and Electromagnetic Interference (EMI)

When working with any analog interface you should be sensitive to the output swing of the

analog signal and to the introduction of noise.

For our medium range IR sensor, the Voltage Output peaks at around 3.1 V. That means to

maximize our resolution we will want to use an external voltage reference of 3.3V. The full scale

reading of the ADC can be set to the AVCC (5 v), AREF, or an internal 1.1v reference voltage.

So in this case we will want to wire a 3.3v reference source to AREF. In a future lecture you will

also find we need to place a limiting resistor between the our reference source and AREF.

Noise is almost always a concern when working with an analog signal. For our IR sensor the

data sheet recommends a 10 uF capacitor be placed as closely as possible to the sensor. In

addition, analog signals are often sent over a twisted and shielded cable.

7

3 Actuators

3.1 Digital Interface
All ten available General Purpose I/O (GPIO) pins may be configured as outputs. The output

circuit of the ATmega328 can sink or source a respectable 20 mA. This means that the

ATmega328P can directly turn on/off LED indicators, without the need for an external driver

(you will still need a limiting resistor).

Figure 3.0 Diode Circuit

Another, digital actuator is our 650nm 1mW 8x13mm Laser Module. Once again before you

purchase a device, make sure you have a datasheet. In the case of an laser, you need to know

if it includes a current source, in which case you only need to turn the laser on/off, Otherwise,

you will need to design in your own current source..

Figure 3.1 Laser Diode Constant Current Circuit

source: Sparkfun Forum

http://www.mfgcn.com/

8

3.3 Motor and Pulse Width Modulation (PWM) Interface

3.3.1 Motor On/Off

If you only need to turn a DC motor ON or OFF you can use any one of the ten GPIO pins. In

any case you will need to add a drive circuit. This can be as simple as a single MOSFET

transistor, pull-down resistor, and a flyback diode.

Figure 3.2 MOSFET Drive Circuit

3.3.2 Change Motor Direction

If you want to change the direction that the motor rotates, you will need to add an H-Bridge.

Each H-bridge requires at least two (2) GPIO pins (Rotate Clockwise, Rotate

Counterclockwise, Off).

Figure 3.3 H-Bridge

9

3.3.3 Change the Speed of a Motor

A simple variable resistor is all you need if you want to control the speed of a DC motor

manually. To control the speed of a DC motor with a microcontroller you will use one of our six

PWM channels (e.g., PWM1A, PWM1B).

Figure 3.4 A simple method to generate the PWM pulse train corresponding to a given

signal is the intersective PWM: the signal (here the red sinewave) is compared with a sawtooth

waveform (blue). When the latter is less than the former, the PWM signal (magenta) is in high

state (1). Otherwise it is in the low state (0).: Wikipedia

3.3.4 All The Above

If you want to turn your DC motor on/off, change direction, and control the speed of the motor

you will need two (2) GPIO pins to configure the H-Bridge and a single PWM channel to control

the speed. Without the Adafruit motor shield, If you wanted to control 4 DC motors (or 2 DC

motors and a Bi-polar stepper motor) you would need eight (8) GPIO pins plus 4 PWM

channels. With the motor shield we only lost 4 GPIO pins - we still need 4 PWM channels.

Attaching a DC motor to the Adafruit motor shield is as simple as wiring your DC motor to one of

the four (4) Motor control connector pairs.

http://en.wikipedia.org/wiki/Pulse-width_modulation

10

3.3.5 Servos

Reprinted from : Microcontroller Interfacing Circuits by Revolution Education Ltd.

A typical servo has just three connection wires, normally red, black and white (or yellow). The

red wire is the 5V supply, the black wire is the 0V supply, and the white (or yellow) wire is for the

positioning signal. The positioning signal is a pulse between 0.75 and 2.25 milliseconds (ms)

long, repeated about every 18 ms (so there are roughly 50 pulses per second). With a 0.75ms

pulse the servo moves to one end of its range, and with a 2.25ms pulse the servo moves to the

other. Therefore, with a 1.5 ms pulse, the servo will move to the central position. If the pulses

are stopped the servo will move freely to any position. Unfortunately servos require a large

current (up to 1A) and also introduce a large amount of noise on the power rail. Therefore as

with all motors, the servo should be powered from a separate power supply. Remember

that when using two power supplies the two ground rails must be joined to provide a common

reference point.

http://www.picaxe.com/docs/picaxe_manual3.pdf

11

4 Serial Interface
The ATmega328P supports three serial interface protocols: Universal Asynchronous

Receiver/Transmitter (USART), Serial Peripheral Interface (SPI), and Inter-Integrated Circuit

(I2C). All three support two-way communications. This means that all three serial subsystems of

the ATmega328P can work as easily with actuators as sensors (see Section 2.1) which

implement one or more of these interface types.

4.1 Universal Asynchronous Receiver/Transmitter (USART)
For the purposes of this study, the USART will be reserved for communications between the

rover and the PC. As we learned in Part 1, the USART subsystem uses two IC pins (TXD and

RXD).

4.2 Serial Peripheral Interface (SPI)
The SPI Subsystem of the ATmega328P requires four pins to implement 2-way serial

communications (SCK, MISO, MOSI, SS). These lines are are wired to pins PB5

(SCK/PCINT5), PB4 (MISO/PCINT4), PB3 (MOSI/OC2A/PCINT3), and PB2

(SS/OC1B/PCINT2). Of interest here are Output Compare signals OC2A and OC1B. These

signals are from the 8-bit Timer 2 and 16-bit Timer 1 subsystems. Both timer subsystems are

used by the Adafruit motor shield to generate Pulse Width Modulated signals PWM2A and

PWM1B. Pulse Width Modulation is critical for controlling the speed of DC motors (PWM2A) and

setting the angle of a servo (PWM1B). Consequently, Adafruit implemented their SPI interface

with General Purpose I/O (GPIO) ports and software. In this way they were able to maximize the

number of PWM signals available to the shield, while sacrificing the SPI subsystem of the

ATmega328P.

So what if you are working with a peripheral device that implements the SPI serial

communications protocol? First, you can follow the Adafruit path and implement your SPI

interface in software. Second, the SPI subsystem can be recovered at the cost of some

functionality or the time sharing of shared resources. An example of the last case would be to

communicate with your SPI device only when the shared motor control signal was not required

(motor is off).

4.3 Inter-Integrated Circuit (I2C)
The I2C or TWI in Atmel speak, is a serial communications protocol with similar functionality to

the SPI communications protocol. However, unlike the SPI which requires 4 pins to implement

two-way communications, the I2C needs only two pins (SDA, SCL). The trade-off here is in the

added complexity of the I2C interface. Today many intelligent sensors and actuators support

both the I2C and SPI interface. This is the case with our L3G4200D 3-Axis Gyro Carrier with

Voltage Regulator. As illustrated in Table 1.0 , the pins of the ATmega328P I2C subsystem are

available for our sensors and actuators.

http://www.pololu.com/catalog/product/1272

12

It should be noted that the I2C interface supports up to 128 devices without the need for any

additional I/O pins.

5 Recovering I/O Resources
TBS

6 Rover Example
For our Rover we have the following Sensors and Actuators.

6.1 Sensors
I2C serial interface communicating with 3-Axis Gyroscope

I2C serial interface communicating with Current Sensor (optional)

I2C Arduino Nano (optional)

Analog input from Mid Range IR

Analog input from Long Range IR

Analog input from RC Circuit to 7.2V NiCD Battery – Dirty Power

Analog input from RC Circuit to 9V NiMH Battery – Clean Digital

Analog input from RC Circuit to 9V NiMH Battery – Camera

Four (4) Digital inputs from two (2) Shaft Encoders. Assumes full resolution of quadrature shaft

encoders.

6.2 Actuators
Two (2) PWM outputs to H-Bridges controlling bipolar Stepper Motor – Adafruit Motorshield

Two (2) PWM outputs to H-Bridge controlling two DC Motors – Adafruit Motorshield

One PWM output to Servo – Adafruit Motorshield

One Digital output thru a Transistor circuit to turn the Laser on/off

One Digital output thru a Transistor circuit to turn the Camera on/off

(One or more Digital outputs to address bits of a 4051 Analog MUX for camera battery)

For our example we begin by allocating resources interfaced to ATmega328P peripheral

13

subsystems requiring the use of only one set of pins. In this case the I2C serial interface.

Looking at the matrix we see that this first step removes two Analog inputs leaving us with four

(4). We need five (5) Analog Inputs so we are already in trouble. We will leave the sensors and

actuators wired to the GPIO peripheral subsystem to the end. This is because these are the

simplest to assign.The PWM channels are output from the Adafruit Motor Shield and so easily

assigned. Once again we have very few options with respect to which pins can be used. We are

now left with 4 Digital Input and 2 Digital Output pins to be connected to the GPIO peripheral

subsystem of the ATmega328P. So we need to find 6 (4 inputs + 2 outputs) GPIO pins. Looking

at the matrix we see that we have 3 GPIO pins left. So we are three (3) I/O pins short. How we

find the 1 analog and 3 GPIO pins is left up to you. Hint: Look-up 4051, 74HCT595, and parallel

shift registers like the 74HC166, 74HC194, and CD4014.

14

Table 2.0 System Resource Map

 ATmega328P Arduino Motor Shield Motor Shield

DIR
(SPI

Interface)

Motor Shield

PWM
(H-Bridge)

Rover

1 PD0 (RXD) J1-1
Digital Pin 0

2 PD1 (TXD) J1-2
Digital Pin 1

3 PD2 (INT0) J1-3
Digital Pin 2

JP3 Pin 1 1.

4 PD3 (INT1,

OC2B)
J1-4
Digital Pin 3

PWM2B IC1 Pin 9 (3-

4EN)

5 PD4 (T0) J1-5
Digital Pin 4

DIR_CLK IC3 Pin 11

(SCK)

6 PD5 (T1,

OC0B)
J1-6
Digital Pin 5

PWM0B IC2 Pin 1 (1-

2)EN

7 PD6 (OC0A,

AIN0)
J1-7
Digital Pin 6

PWM0A IC2 Pin 9 (3-

4EN)

8 PD7 (AIN1) J1-8
Digital Pin 7

DIR_EN IC3 Pin 13

(G)

9 PC0 (ADC0) J2-1
Analog Pin 0

JP5-1 Long Range IR

10 PC1 (ADC1) J2-2
Analog Pin 1

JP5-2 Meduim Range IR

11 PC2 (ADC2) J2-3
Analog Pin 2

JP5-3 9v NiMH Battery

12 PC3 (ADC 3) J2-4
Analog Pin 3

JP5-4 7.2v NiCD Battery

13 PC4 (ADC 4,

SDA)
J2-5
Analog Pin 4

JP5-5 I2C Gyro, Current Sensor

14 PC5 (ADC 5,

SCL)
J2-6
Analog Pin 5

JP5-6 I2C Gyro, Current Sensor

15 PB0 (ICP1) J3-1
Digital Pin 8

DIR_SER IC3 Pin 14

(SER)

16 PB1 (OC1A) J3-2
Digital Pin 9

PWM1A Servo 2 2.

17 PB2 (SS,

OC1A)
J3-3
Digital Pin 10

PWM1B Servo 1 Servo

15

18 PB3 (MOSI,

OC2A)
J3-4
Digital Pin 11

PWM2A IC1 Pin 1 (1-

2EN)

19 PB4 (MISO) J3-5
Digital Pin 12

DIR
_Latch

IC3 Pin 12

(RCK)

20 PB5 (SCK) J3-6
Digital Pin 13

 3.

21 GND J3-7 GND GND

22 AREF J3-8 AREF 3.3 v through Resistor

23 X1-P1 (M1) DC Motor Left

24 X1-P2 (M1) DC Motor Left

25 X1-P3 (GND)

26 X1-P4 (M2) DC Motor Right

27 X1-P5 (M2) DC Motor Right

28 X2-P1 (M4) Stepper Motor Red

29 X2-P2 (M4) Stepper Motor Blue

30 X2-P3 (GND)

31 X2-P4 (M3) Stepper Motor Black

32 X2-P5 (M3) Stepper Motor Green

16

7 Rover with Arduino Nano Example
In this design example to the chassis mounted Arduino Uno we add a Arduino Nano to the

scan/tilt platform.

7.1 Scan / Tilt Platform

7.1.1 Sensors

Analog input from Mid Range IR

Analog input from Long Range IR

Analog input from RC Circuit to 9V NiMH Battery – Camera

7.1.2 Actuators

One PWM output to Servo – Adafruit Motorshield

One Digital output thru a Transistor circuit to turn the Laser on/off

One Digital output thru a Transistor circuit to turn the Camera on/off

7.1.3 Serial Communication

I2C Interface to Rover MCU

7.2 Rover

7.2.1 Sensors

Analog input from RC Circuit to 7.2V NiCD Battery – Dirty Power

Analog input from RC Circuit to 9V NiMH Battery – Clean Digital

Four (4) Digital inputs from two (2) Shaft Encoders.

7.2.2 Actuators

Two (2) PWM outputs to H-Bridges controlling bipolar Stepper Motor – Adafruit Motorshield

Two (2) PWM outputs to H-Bridge controlling two DC Motors – Adafruit Motorshield

7.2.3 Serial Communication

I2C Interface to Scan/Tilt MCU

I2C serial interface communicating with 3-Axis Gyroscope

I2C serial interface communicating with Current Sensor

For our example we begin by allocating resources interfaced to ATmega328P peripheral

subsystems requiring the use of only one set of pins. In this case the I2C serial interface.

Looking at the matrix we see that this first step removes two Analog inputs leaving us with four

(4). We need two (2) Analog Inputs so we have two (2) pins which may be used for sensors and

actuators to be wired to the GPIO peripheral subsystem (PC 2 - 5). Four (4) of our six (6) PWM

17

channels are required by the Adafruit Motor Shield. This leaves us with two (2) more pins which

may be used for sensors and actuators to be wired to the GPIO peripheral subsystem. Looking

at the matrix we see that we have 2 GPIO pins PD2 and PB5 which are unused, giving us a

total of six (6) pins available to the GPIO peripheral subsystem. We only need four (4) for our

two shaft encoders which means we have two (2) spare pins.

18

Table 3.0 System Resource Map for Chassis Mounted Arduino Uno

 ATmega328P Arduino Motor Shield Motor Shield

DIR
(SPI

Interface)

Motor Shield

PWM
(H-Bridge)

Rover

1 PD0 (RXD) J1-1
Digital Pin 0

2 PD1 (TXD) J1-2
Digital Pin 1

3 PD2 (INT0) J1-3
Digital Pin 2

JP3 Pin 1 1.

4 PD3 (INT1,

OC2B)
J1-4
Digital Pin 3

PWM2B IC1 Pin 9 (3-

4EN)

5 PD4 (T0) J1-5
Digital Pin 4

DIR_CLK IC3 Pin 11

(SCK)

6 PD5 (T1,

OC0B)
J1-6
Digital Pin 5

PWM0B IC2 Pin 1 (1-

2)EN

7 PD6 (OC0A,

AIN0)
J1-7
Digital Pin 6

PWM0A IC2 Pin 9 (3-

4EN)

8 PD7 (AIN1) J1-8
Digital Pin 7

DIR_EN IC3 Pin 13

(G)

9 PC0 (ADC0) J2-1
Analog Pin 0

JP5-1 2.

10 PC1 (ADC1) J2-2
Analog Pin 1

JP5-2 3.

11 PC2 (ADC2) J2-3
Analog Pin 2

JP5-3 9v NiMH Battery

12 PC3 (ADC 3) J2-4
Analog Pin 3

JP5-4 7.2v NiCD Battery

13 PC4 (ADC 4,

SDA)
J2-5
Analog Pin 4

JP5-5 I2C Gyro, Current Sensor,

Scan/Tilt

14 PC5 (ADC 5,

SCL)
J2-6
Analog Pin 5

JP5-6 I2C Gyro, Current Sensor,

Scan/Tilt

15 PB0 (ICP1) J3-1
Digital Pin 8

DIR_SER IC3 Pin 14

(SER)

16 PB1 (OC1A) J3-2
Digital Pin 9

PWM1A Servo 2 4.

17 PB2 (SS,

OC1A)
J3-3
Digital Pin 10

PWM1B Servo 1 5.

19

18 PB3 (MOSI,

OC2A)
J3-4
Digital Pin 11

PWM2A IC1 Pin 1 (1-

2EN)

19 PB4 (MISO) J3-5
Digital Pin 12

DIR
_Latch

IC3 Pin 12

(RCK)

20 PB5 (SCK) J3-6
Digital Pin 13

 6.

21 GND J3-7 GND GND

22 AREF J3-8 AREF

23 X1-P1 (M1) DC Motor Left

24 X1-P2 (M1) DC Motor Left

25 X1-P3 (GND)

26 X1-P4 (M2) DC Motor Right

27 X1-P5 (M2) DC Motor Right

28 X2-P1 (M4) Stepper Motor Red

29 X2-P2 (M4) Stepper Motor Blue

30 X2-P3 (GND)

31 X2-P4 (M3) Stepper Motor Black

32 X2-P5 (M3) Stepper Motor Green

