
1

Microcontroller Based Interface Design

Part 1

System Engineering the Rover

Study of Microprocessor Based Systems and their integration with peripheral devices

including sensors, actuators, and serial communications. Programming problems will be

completed in C++, and at the instructor’s discretion assembly, using the basic problem solving

techniques learned in CECS100 and EE346. Following a progressive lab sequence, over the

semester the student will design and construct a modern RISC microcontroller based system.

EE444 “Study of RISC microprocessor based systems and their integration with

peripheral devices” Course Description

2

1 Microcontroller Based Interface Design

1.1 Embedded Systems

Figure 1.0 Controller Based System

Engineers design systems. A system can be characterized by a box with an input and

output. Typically the engineer is tasked to design the box with a given set of inputs and a

desired output.

● When a controller “the brain” is part of the design solution, the design is known

as an Embedded System.

● The controller may be implemented using an ASIC (Application Integrated

Circuit), FPGA (Field Programmable Gate Array) or in most cases a

Microcontroller.

● For a microcontroller based design, the input device is by definition a Sensor,

while the output device is known as an Actuator.

In this document we look at the microcontroller based system design used by our rovers.

It is hoped that by looking at this specific example you will be able to apply the lessons

learned to the design of other microcontroller based systems.

3

1.2 Rover Microcontroller Based System Design
Figure 1.1 ATmega328P Microcontroller Based System

Figure 1.1 illustrates our rover design from a generic capabilities perspective. At the heart of our

embedded system is an Atmel ATmega328P Microcontroller.

4

The ATmega328P is built into an Arduino motherboard.

Figure 1.2 Arduino Uno

● The Arduino is an Open-source Development Platform. The Arduino board provides

power conditioning, and a 16 MHz system clock.

● The Arduino in addition provides a C++ IDE (Integrated Development Environment) for

writing your program.

● Once your program is written, the Arduino provides a Boot Loader, running in firmware,

and

● USB (Universal Serial Bus) communications circuitry for uploading your programs and

downloading data. Finally,

● the Arduino board includes two sets of connectors for plugging in a daughter-board

called a Shield.

● Our rovers includes the Adafruit Motor Shield. The Adafruit motor shield extends the

capability of the Arduino by adding two L293D H-Bridge ICs. The L293D H-Bridge IC

can provide 0.6 A per bridge (1.2A peak) to run our motors.

1.3 Document Objective
The objective of this document is to teach you how to interface peripheral devices to a

microcontroller based system. We first...

1. define the resource capabilities of our integrated system (ATmega328P - Arduino -

Adafruit Motor Shield), next

2. look at how sensors and actuators could be incorporated into this design and finally

3. present the reference design as an example.

2 Interface Capabilities of our Integrated System
Our embedded system is comprised of an ATmega328P, Arduino Board, and Adafruit Motor

Shield. As shown in Figure 1.1, at the heart of the system is the ATmega328P microcontroller.

Both the Arduino and the Adafruit motor shield consume some of the resources of the

ATmega328P in exchange for extending the capabilities of the integrated system. Table 2

provides a mapping of these resources and ultimately (last column) the interface resources

5

available to the sensors and actuators of our rover.

Table 2.0 System Resource Map

 ATmega328P Arduino Motor Shield Motor
Shield DIR
(SPI
Interface)

Motor
Shield PWM
(H-Bridge &
Servos)

 Rover

1 PD0 (RXD) J1-1
Digital Pin 0

2 PD1 (TXD) J1-2
Digital Pin 1

3 PD2 (INT0) J1-3
Digital Pin 2

JP3 Pin 1 Laser

4 PD3 (INT1,
OC2B)

J1-4
Digital Pin 3

PWM2B IC1 Pin 9
(3-4EN)

5 PD4 (T0) J1-5
Digital Pin 4

DIR_CLK IC3 Pin 11
(SCK)

6 PD5 (T1,
OC0B)

J1-6
Digital Pin 5

PWM0B IC2 Pin 1
(1-2)EN

7 PD6 (OC0A,
AIN0)

J1-7
Digital Pin 6

PWM0A IC2 Pin 9
(3-4EN)

8 PD7 (AIN1) J1-8
Digital Pin 7

DIR_EN IC3 Pin 13
(G)

9 PC0 (ADC0) J2-1
Analog Pin 0

JP5-1 Long Range IR

10 PC1 (ADC1) J2-2
Analog Pin 1

JP5-2 Mid Range IR

11 PC2 (ADC2) J2-3
Analog Pin 2

JP5-3

12 PC3 (ADC 3) J2-4
Analog Pin 3

JP5-4

13 PC4 (ADC 4,
SDA)

J2-5
Analog Pin 4

JP5-5 Gyro I2C SDA

14 PC5 (ADC 5,
SCL)

J2-6
Analog Pin 5

JP5-6 Gyro I2C SCL

15 PB0 (ICP1) J3-1
Digital Pin 8

DIR_SER IC3 Pin 14
(SER)

16 PB1 (OC1A) J3-2
Digital Pin 9

PWM1A Servo 2
Signal

 Servo Yellow or Orange
Wire

17 PB2 (SS,
OC1B)

J3-3
Digital Pin 10

PWM1B Servo 1
Signal

18 PB3 (MOSI,
OC2A)

J3-4
Digital Pin 11

PWM2A IC1 Pin 1
(1-2EN)

6

19 PB4 (MISO) J3-5
Digital Pin 12

DIR
_Latch

IC3 Pin 12
(RCK)

20 PB5 (SCK) J3-6
Digital Pin 13

21 GND J3-7 GND GND

22 AREF J3-8 AREF 4.7 K to 3.3v

23 X1-P1 (M1) Left DC Motor -

24 X1-P2 (M1) Left DC Motor +

25 X1-P3 (GND) NC

26 X1-P4 (M2) Right Motor -

27 X1-P5 (M2) Right Motor +

28 X2-P1 (M4) Stepper Motor Red

29 X2-P2 (M4) Stepper Motor Blue

30 X2-P3 (GND) NC

31 X2-P4 (M3) Stepper Motor Black

32 X2-P5 (M3) Stepper Motor Green

7

2.1 ATmega328P I/O pins (column 1)
The I/O pins of the the ATmega328P are shown in column 1 of Table 2.0. Due to pinout

limitations of the IC package (DIP, TQFP, and QFN/MLF),

● all I/O pins of the ATmega328P are multiplexed. Specifically,

● they can be programmed to provide different interfaces to the system.

Figure 2.0 ATmega328P Pin-out

2.1.1 XTAL and Reset

Shown in Figure 2.0 but not Table 2.0 is the loss of three digital I/O pins for the XTAL (crystal)

and reset. What this means to the system designer instead of having 23 digital pins he/she now

only has twenty (20).

2.2 Arduino (column 2)
The multiplexing of the I/O pins immediately forces the system engineer to make trade-offs in

the design of their device. For example, as shown in the first two rows of Table 2.0, to allow

communications with a PC, the Arduino uses the pins allocated to the USART0 (Univeral

Asynchronous Receiver/Transmitter) peripheral subsystem of the ATmega328P. These pins are

shared (multiplexed) with the GPIO (General Purpose Input/Output) peripheral subsystem of the

ATmega328P subsystem. In Table 2.0, this loss of resources to the rover is shown by the color

of the cells going from light orange to white. For completeness, it should be noted that in a

pinch some of these resources can be recovered, but at the cost of system complexity.

8

Table 2.1 Multiplexed GPIO Pins Lost to ATmega328P Subsystems

GPIO ATmega328P Subsystem Function

Port D bits 1 and 0 USART 0

Port B bits 7 and 6 Oscillator Circuits / Clock Generation

Port C bit 6 Power Supervision POR / BOD & Reset

Figure 2.1 ATmega328P Simplified Block Diagram

9

2.3 Adafruit Motor Shield
The Adafruit motor shield conserves microcontroller resources by implementing an SPI (Serial

Peripheral Interface) interface in software. Thus, while the motor shield requires 8 digital pins to

configure the two L293D Dual H-Bridge ICs, it only uses four (4) ATmega328P general purpose

I/O pins. In addition, the motor shield requires four (4) PWM (Pulse Width Modulation) pins.

Thus our ATmega328P GPIO pin count has been further reduced from eighteen (18) to ten (10).

Table 2.2 Multiplexed GPIO Pins Used by Adafruit Subsystems

GPIO Adafruit Subsystem Function

Port D bits 7, 4 and Port C bits 4, 0 Digital Input Register (DIR) 74HCT595N

Port D bits 6, 5, 3 and Port B bit 3 2 x L293D Dual H-Bridge

In exchange for the loss of eight (8) ATmega328P GPIO pins, the Adafruit motor shield now

provides 4 H-bridges outputs (plus two ground pins) - Table 2.0 rows 23 to 32.

2.4 Rover Resource Map
Table 2 Rover Resource Map shows the 10 I/O pins available to the rover. In the next section

we look at how sensors and actuators could be incorporated into the design of our rover.

Specifically, we will map our I/O pins to our sensors and actuators

Table 2.3 Rover Resource Summary

Up To I/O Pin Names Sensor/Actuator Type

 6 Analog (ADC0 to ADC5) Analog Sensors

10 GPIO (PC5-0, PB5, PB2, PB1, PD2) Digital (on/off) Sensors

10 GPIO (PC5-0, PB5, PB2, PB1, PD2) Digital (on/off) Actuators

 2 PWM (PWM1A, PWM1B) PWM Controlled Motors
1

 4 H-Bridge Channels (M1, M2, M3, M4) Bi-Directional PWM Controlled Motors

 1 Serial Interface (SDA, SCL) I
2
C Sensors and/or Actuators

Notice that the I/O Types in Table 2.3 add up to more than ten (10), which brings us back to the

beginning. Specifically, the system engineer must now trade off these 33 possible interface

types with the 10 remaining pins available to them.

1
 Technically, the total number of PWM channels is 6 (4+2), if you chose to use the 4 Bi-Directional

channels as single PWM channels.

10

Table 2.3 Rover Resource Map

 ATmega328P Arduino Motor Shield Motor
Shield DIR

Motor
Shield PWM
(H-Bridge)

Rover

3 PD2 (INT0) J1-3
Digital Pin 2

JP3 Pin 1

9 PC0 (ADC0) J2-1
Analog Pin 0

JP5-1

10 PC1 (ADC1) J2-2
Analog Pin 1

JP5-2

11 PC2 (ADC2) J2-3
Analog Pin 2

JP5-3

12 PC3 (ADC 3) J2-4
Analog Pin 3

JP5-4

13 PC4 (ADC 4,
SDA)

J2-5
Analog Pin 4

JP5-5

14 PC5 (ADC 5,
SCL)

J2-6
Analog Pin 5

JP5-6

16 PB1 (OC1A) J3-2
Digital Pin 9

PWM1A

17 PB2 (SS,
OC1A)

J3-3
Digital Pin 10

PWM1B

20 PB5 (SCK) J3-6
Digital Pin 13

23 X1-P1 (M1)

24 X1-P2 (M1)

25 X1-P3 (GND)

26 X1-P4 (M2)

27 X1-P5 (M2)

28 X2-P1 (M4)

29 X2-P2 (M4)

30 X2-P3 (GND)

31 X2-P4 (M3)

32 X2-P5 (M3)

11

2.4.1 Notes

1. Table 2.3 does not include pins associated with ATmega328P subsystems considered

outside the scope of this document, for example:the analog comparator.

2. As discussed in the document, the Adafruit motor shield implements the SPI interface in

software. Unfortunately, other design trade-offs make the SPI subsystem of the

ATmega328P inaccessible to the Rover. This design decision was made by Adafruit in

order to maximize the number of PWM channels available to the system.

3. Technically the L293D is a quadruple half-h driver. However, Adafruit has wired them in

a dual H-Bridge configuration. Specifically, two enable lines are wired to a single PWM

channel.

