
Approved for CSULB EE444 “Microprocessor Based System Design” F’17 ONLY

O c t o b e r 2 4 , 2 0 1 7 1 | P a g e

Lab 1 — An Introduction to 3DoT & C++

This lab is designed to introduce you to the 3DoT Board (and its equivalent, the Sparkfun Pro Micro

board), the Arduino Integrated Development Environment (IDE) and C++ programming language. Plus,

you will learn about the power of library files. Library files are simply files that you instruct the Arduino

IDE to include in your program. In this lab, you are going to create a library file called 3DoTConfig that

handles all of the initialization and configuration for your robot.

You can find this and future lab updates at http://www.csulb.edu/~hill

Table of Contents
What is New? .. 2

Data Types .. 2

C++ Code ... 2

Arudino Built-In Functions .. 2

Introduction to the Arduino IDE ... 2

Creating A New Sketch In Arduino IDE .. 3

3DoT Board Schematic & Block Diagram .. 4

Configuring the Input and Output Pins ... 6

Working with the GPIO Registers .. 6

Using the Arduino Built-In Functions .. 8

Creating the 3DoTConfig “library” file .. 9

Making the 3DoTConfig.ino file .. 9

Using #define to create informative names .. 11

Line Following Algorithm .. 11

Controlling the Motors ... 11

Interpreting the IR sensor Data ... 12

Lab 1 Deliverable(s) .. 13

Checklist .. 13

http://www.csulb.edu/~hill
http://www.csulb.edu/~hill

Approved for CSULB EE444 “Microprocessor Based System Design” F’17 ONLY

O c t o b e r 2 4 , 2 0 1 7 2 | P a g e

What is New?
New terminology and concepts are listed below in black. If you have any questions on this information,

refer back to the lectures on the introduction to C++ and configuring the GPIO registers.

Data Types
const // Define variable as a constant

static // Define variable that will persist after a function return

uint8_t // Defines the data type as an unsigned 8 bit integer (0-255)

uint16_t // Defines the data type as an unsigned 16 bit integer (0-65,535)

C++ Code

#define Name Number // Allows the user to define Name to be equivalent to Number

#include <filename> // Used to include any built-in libraries such as avr/io.h

#include “filename” // User defined libraries or files that are in the sketch folder

Bit / Byte Operations

variable = byteValue << numberOfShifts; // Left shift byte value by the number defined

variable = _BV (bitNumber); // Turns a bit number into a byte value

variable |= _BV(bitNumber); // Set a specific bit in a byte value

variable &= ~_BV(bitNumber); // Clear a specific bit in a byte value

variable = byteValue | byte Value; //

Arudino Built-In Functions

Pin Configuration & Control

pinMode(pin_number, TYPE); // Define a pin as an input or output

digitalRead(pin_number); // Read a digital value for an input pin

analogRead(pin_number); // Read an analog value from an input pin

digitalWrite(pin_number, output); // Output a digital value to an output pin

Introduction to the Arduino IDE
In lab, you will be spending most of your time working within an Integrated Development Environment

(IDE). For our labs, we will be working in the Arduino IDE. The IDE lets us write our program in a human

readable form (C++) and then translate it into a machine-readable form understood by the

ATmega32U4. There are many other types of IDEs for C++ programming such as Eclipse and Atmel

Studio 7 that allow us to create very complex projects. The focus will be on the Arduino IDE because of

how easy it is to learn and use.

http://web.csulb.edu/~hill/ee444/Lectures/02%20C++%20Introduction.pdf
http://web.csulb.edu/~hill/ee444/Lectures/03%20C++%20ATmega%20GPIO.pdf

Approved for CSULB EE444 “Microprocessor Based System Design” F’17 ONLY

O c t o b e r 2 4 , 2 0 1 7 3 | P a g e

Creating A New Sketch In Arduino IDE
To start our lab, we will be creating a new sketch in the Arduino IDE. This is done by opening the Arduino

IDE and it should generate a blank sketch to start with. The other way is to click File -> New as shown in

the figure below.

The first thing we will be adding into our code is a title block to describe the purpose of the sketch and

the author. This will go before the setup function and should look something like this.

Next, you will need to rename the sketch to a more descriptive name. Click on File -> Save and type in

the name you want to save it as such as Lab01. It will create a folder for your sketch in the location you

have designated for all sketches (Default is in the Arduino folder located in My Documents). Now we will

take a look at the hardware before developing the code to control it.

Approved for CSULB EE444 “Microprocessor Based System Design” F’17 ONLY

O c t o b e r 2 4 , 2 0 1 7 4 | P a g e

3DoT Board Schematic & Block Diagram
The end goal of these labs is to program a robot utilizing the 3DoT board or the equivalent setup using

the Sparkfun Pro Micro, TB6612FNG Motor Driver, and other components. Shown below are the major

features of the 3DoT board and the block diagram of the latest version.

3DoT is a micro-footprint 3.5 x 7 cm all-in-one Arduino

compatible microcontroller board designed for robot projects.

o ATmega32U4 Microcontroller Unit (MCU)

o CSULB IR Sensor Shield

o Power from a single CR123A 650mAh rechargeable Li-

ion battery

o Integrated 3.7v Li-ion battery charger

o All digital logic powered from Low Dropout (LDO) 3.3v

regulator with power and ground output header pins

provided.

o Battery Level Sensor

o TB6612FNG Dual DC Motor Driver

o 3.7v, 5.0v (default), and 6.0v Turbo Boost for driving DC

motors

o Reverse voltage and overvoltage protection circuitry

o Current protection provided by a PTC polyfuse.

o Android and Apple iOS application software (HM-11 Bluetooth BLE module required)

o Two I2C compatible connectors

o Connectors for two 3.7v Micro or Ultra-Micro Servos

It would be ideal to spend some time analyzing the block diagram to get a better understanding of the

capabilities of the 3DoT board but we will focus on the connections between the motor driver and IR

sensors for Lab 1. There is a specific way that the pins are mapped to the motor driver and sensors,

which is what you will want to follow if you are using the Sparkfun Pro Micro. Figure 2 provides an

isolated view of those connections.

3DoT Board

3DoT Board

Approved for CSULB EE444 “Microprocessor Based System Design” F’17 ONLY

O c t o b e r 2 4 , 2 0 1 7 5 | P a g e

Figure 1 – 3DoT Detailed Block Diagram

Approved for CSULB EE444 “Microprocessor Based System Design” F’17 ONLY

O c t o b e r 2 4 , 2 0 1 7 6 | P a g e

Figure 2 – Optical Sensor to Motor Driver Interface

The main objective of Lab 1 is to develop the line following logic for your robot to move through the

maze that was shown in the Mission PDF. We will handle what to do at intersections in later labs. For

the line following algorithm, it will involve taking data in from the four IR sensors and deciding how the

control signals being sent to the motor driver needs to change based on that information. The inner two

IR sensors provide the most relevant data about your robot’s position as it follows the line and is what

we will be focused on. You can utilize all four sensors if you want to. To start developing this code, you

will need to configure the input and output pins.

Configuring the Input and Output Pins
The first thing that needs to be done in your program is to define what pins are going to be used for the

Atmega32U4. Just because components have been hardwired to specific pins does not mean the

microcontroller knows what they are being used for. You will need to configure the input and output

pins. As you learned in lecture, this involves modifying the GPIO registers (DDRX and PORTX).

Working with the GPIO Registers

In order to configure a pin as an input, the corresponding bit position in the DDRX register needs to be

cleared to 0. If that input pin needs to use a pull-up resistor, the corresponding bit position in the PORTX

register needs to be set to 1. Obtaining the value that is being detected on that input is done by reading

http://web.csulb.edu/~hill/ee444/2%20The%20Mission.pdf

Approved for CSULB EE444 “Microprocessor Based System Design” F’17 ONLY

O c t o b e r 2 4 , 2 0 1 7 7 | P a g e

the corresponding bit position in the PINX register. For an output pin, the value in the DDRX register

needs to be set to 1. You have to write the value that is to be outputted in the PORTX register. This

information is also provided in figure 3.

Figure 3 – GPIO Pin Configuration

From figure , you will notice that our input pins for the IR sensors are PD0, PD1, PF4, and PF5. The

output pins that go to the TB6612FNG motor driver are PB4, PB5, PB6, PC6, PD4, PD6, and PD7. It is

quickly apparent that some of the GPIO registers such as DDRD will have both inputs and outputs

defined. It is possible to define each pin individually but it would be more efficient to develop an

expression to get the final value that needs to be written to the register. It is also important to preserve

the values of the other bits in the GPIO register because that would change the functionality of those

pins. This can be done with a combination of the bit/byte operations that were introduce earlier.

We will use the output pins PB4, PB5, and PB6 as our first example. Because they are outputs, bit

positions 4, 5, and 6 of DDRB will need to be set to 1. If you were to configure them individually, you

would the following instruction.

DDRB |= (1<<PB4);

That instruction takes the original value of the DDRB register and performs the OR operation with the

value provided. This will set only bit position 4 and define that pin as an output. That value can be a

single expression or multiple expressions combined together, which means the instruction could be

expanded to this.

DDRB |= ((1<<PB4) | (1<<PB5) | (1<<PB6));

The expression (1<<PB4) translates into a binary value of 0b00010000 because of how the << operator

works and is equivalent to _BV(PB4). You can use either when defining the values that need to be put

into the GPIO registers.

For clearing values, the following instruction would be used. It is performing the AND operation on the

original value of DDRD and the complement of the expression.

DDRD &= ~(1<<PD0);

On Your Own

Apply what you have learned to write the code needed to configure the input and output pins for your

robot.

Approved for CSULB EE444 “Microprocessor Based System Design” F’17 ONLY

O c t o b e r 2 4 , 2 0 1 7 8 | P a g e

Using the Arduino Built-In Functions
Now that you have a better understanding of the configuration of the pins, we can utilize the built-in

functions that the Arduino IDE provides to simplify the code. These functions are the pinMode(),

digitalRead(), analogRead(), and digitalWrite() functions. They essentially operate the

same way as manually working on the GPIO registers that we covered earlier. The main difference is that

it uses the pin numbering that is specific to the board being used. In this case, that would be the

Sparkfun Pro Micro. Figure 4 shows the pin numbering and how they correspond to the GPIO ports.

Figure 4 – Sparkfun Pro Micro Pin Number Diagram

You will notice that PD0 corresponds to pin number 3 and PD1 is pin number 2. Find out the specific pin

numbers that correspond to the pins used for the IR sensors and the motor driver. If you are using the

3DoT board, the pin numbering matches with the Pro Micro. If you are using the Pro Micro but want

to wire it differently than shown in figure , please use the corresponding pin numbers.

Now that you have all of the pin numbers, it is very straightforward to configure the pins as inputs or

outputs. Using the pinMode() function, you can define if that pin number is an input or output by using

something like the following.

pinMode(3,INPUT);

Once the pins have been configured, you can read the data from an input by using the digitalRead() or

analogRead() functions. The main distinction is that analogRead() will utilize the analog to digital

Approved for CSULB EE444 “Microprocessor Based System Design” F’17 ONLY

O c t o b e r 2 4 , 2 0 1 7 9 | P a g e

converter (ADC) to produce a value between 0 and 1023. The digitalRead() will return a value of 0 or 1. If

you wanted to read a value from one of the IR sensors, you could use digitalRead(2);

For outputting a value on a pin, you can use the digitalWrite() function. If we needed to output a value

of 1 on PD7, this can be done with the following function call.

digitalWrite(6, HIGH);

With all of this information, you can now convert the code that you wrote before and develop the line

following algorithm.

Make the code that you created for working with the GPIO registers into comments and keep them in

the “ino” file. Add the equivalent code using the built-in functions.

Creating the 3DoTConfig “library” file
Now that you know how to configure the inputs and outputs, it would be optimal to group all of this

code into one function and call it once in the setup() function instead of having all of the code there.

Doing this will also allow you to quickly modify the configuration if anything changes and help make your

code more readable. We will do this by defining the pin numbers with names that are more informative

putting it all into a separate file to be included. It will be the first library file that is included in our code.

Making the 3DoTConfig.ino file
We are going to be utilizing a feature of the Arduino IDE that makes it very easy to use but it is not

present in other C++ IDEs. The way we are defining this file is also not how it would be done normally.

Library files are normally composed of the header file that provide the prototypes of the functions in the

library and the .cpp file which has all of the C++ code. The Arduino IDE is unique in the sense that it can

accommodate multiple “.ino” files in the same sketch project without needing to use the #include

statement. This way, the user can separate their code as if it was a library file and still use those

functions and definitions in their main file.

We will be doing this with the configuration of your robot. First, a new “.ino” file will need to be created.

The figure below shows how to do this. Name the file 3DoTConfig.ino

Approved for CSULB EE444 “Microprocessor Based System Design” F’17 ONLY

O c t o b e r 2 4 , 2 0 1 7 10 | P a g e

Figure 5 – Make a New Tab

Now that you have created the new file, write the following function definition and copy the code you

developed for defining the inputs and outputs to the location indicated.

void Init3DoT() {

 // Put your code here

 //

};

Approved for CSULB EE444 “Microprocessor Based System Design” F’17 ONLY

O c t o b e r 2 4 , 2 0 1 7 11 | P a g e

Using #define to create informative names
We will be using the #define statement in order to associate specific pin numbers with a user defined

name. These statements should go after any include files that you have in your main file. They could also

be within any library files you have included but because we are making a “pseudo” library file, they will

go at the very top of Lab 1 after the title block and before the setup() function.

You can define the pins however you would like. For example, the inner IR sensors could be specified as

follows. The same can be done for the control signals to the motor driver, so that each motor can be

clearly distinguished from the other.

#define IR_IN_L 3 // PD0 = pin 3, IR_IN_L is assigned to PD0

#define IR_IN_R 2 // PD1 = pin 2, IR_IN_R is assigned to PD1

#define BIN1 9 // PB5 = pin 9, BIN1 is assigned to PB5

#define BIN2 5 // PC6 = pin 5, BIN2 is assigned to PC6

These definitions can also be done by creating a variable that is set to the pin number value. These

values will never change, so the const modifier will be used. The following is equivalent to the example

given above. You can use either format for your program.

const int IR_IN_L = 3;

const int IR_IN_R = 2;

const int BIN1 = 9;

const int BIN2 = 5;

Line Following Algorithm
Now that you have finished the configuration, we can finally work on developing the line following

algorithm. We will need to first get the motors to move the robot forward and then adjust them if the

robot strays from the line.

Controlling the Motors
In order to get your robot to move forward, each motor will need to be configured to rotate in a specific

direction. Depending on the orientation of the motors on your robot, you may need to have the motors

going the same direction or opposite from each other. Using the following table from the motor driver

datasheet, find the ideal combination that will get the robot moving forward.

Approved for CSULB EE444 “Microprocessor Based System Design” F’17 ONLY

O c t o b e r 2 4 , 2 0 1 7 12 | P a g e

Figure 6 – Truth Table for TB6612FNG Motor Driver

You will see that you need to set several of the control pins to be either high or low. For example, the

STBY pin (PB4) needs to be HIGH and this can be done using the digitalWrite() function or modifying the

PORTB register. Do this for all 7 of the control pins. You will notice that this will put the motors at full

speed.

Interpreting the IR sensor Data
Now that you have gotten the robot to move forward, we will now incorporate the IR sensors to provide

feedback as your robot tries to follow the line. Depending on how you have configured the inputs, you

can treat them as analog or digital inputs. If you are following the 3DoT shield configuration, the outer

sensors are digital while the inner sensors are analog. The main distinction between the two is how the

data should be interpreted.

If it is a digital input, the input value that comes out from the IR sensor when it is over the black line is

HIGH (a value of 1). It will be LOW otherwise. This is determined by the microprocessor’s own threshold

for digital logic and cannot be modified. While there is no customization, it is very useful for situations

that have only two states and is easy to implement.

If there are more than two states or if a custom threshold needs to be defined, you will want to use an

analog input. The voltage on the input pin is processed by the analog to digital convertor (ADC) and it

will become an integer within the range of 0 to 1023. From there, you can create an algorithm to

determine what that value represents. For example, if the value is less than 50, it could mean that you

are detecting the white of the maze. If the value is greater than 50 but less than 700, it could be some

range of shades of grey. If it is above 700, it could mean that black is detected. This gives you the

flexibility of defining exactly what thresholds to look for.

Regardless of what configuration you have for the inputs, you will need to read the value from that pin

and save it to a variable for your program to use. This is done with the following lines of code.

Approved for CSULB EE444 “Microprocessor Based System Design” F’17 ONLY

O c t o b e r 2 4 , 2 0 1 7 13 | P a g e

int x = digitalRead(IR_IN_L); // For digital inputs

int y = analogRead(IR_IN_R); // For analog inputs

You can then create an algorithm that will adjust the motors according to the IR sensor inputs. If the

robot starts to veer off the line towards the left, it means that the right motor is moving faster than the

left motor. This can be due to the differences in the gearing of the motors or the quality of the motors

themselves. The right IR sensor should detect the black line the moment it starts to go too far. In order

to adjust and get the robot back on the line, your code should stop the right motor until the right IR

sensor is back on the white surface of the maze. The same logic applies to when it veers to the right.

Develop the code to have the robot continuously follow a line and adjust if it veers off course. Place this

code in the main loop function.

Lab 1 Deliverable(s)

All labs should represent your own work - DO NOT COPY.

Submit all of the files in your sketch folder. Make sure that the code compiles without any errors.

Checklist

Remember before you turn in your lab...

1. The configuration of the robot is written in the 3DoTConfig.ino file.

2. All of the configuration is done in the Init3DoT() function.

3. The Init3DoT() function should be called in the setup function.

4. The robot should move forward and use the IR sensors to follow a line

