
# Microprocessor Based System Design

# Study of RISC microprocessor-based systems and their integration with peripheral devices.

# **Learning Objectives**

Study of microprocessor-based systems and their integration with peripheral devices including sensors, actuators, and serial communications. Programming problems will be completed in C++, using the basic problem-solving techniques learned in EE186 and EE346. Following a progressive lab sequence, over the semester the student will learn how to design, build, and program a modern RISC microcontroller-based robot.





#### **Course Outline**

The focus of the first few lectures is on hardware design. Next up, is a discussion of why programming a microcontroller is different from programming a computer. Based on the prerequisites for this course, the student should have an introductory knowledge of writing in a high-level language like C++. The course now goes into greater detail on both the hardware and programming of real-world embedded systems, in most cases using your 3DoT Robot as a case study. For example, new to this semester is a special lecture on how the 3DoT Battery Powers its suite of Robots.

# 1. System Engineering Your Robot

- MCU Based Interface Design
- Allocating MCU Resources

#### 2. Robot Sensors and Actuators

- Interfacing Sensors and Actuators
- Digital and Analog Sensors
- Digital and Analog (PWM) Actuators
- Serial Interface Protocols

# 3. C++ Types of Data & Playing with Bits

- Assemblers, Compilers, and Interpreters
- Scope and Data Types
- The Arduino Scripting Language
- Working with Bits in C++

# 4. General Purpose I/O Ports

- Pin Description of the ATmega32U4
- GPIO Port pin as an Output and Input.
- 3DoT Board Design Example

# 5. Pulse Width Modulation (PWM)

- Motor Direction and Speed Control
- ATmega32U4 10-bit Timer/Counter 4
- PWM Motor Speed Control Example

# 5. C++ Structured Data Types

- Declaring an Array
- Accessing Array Elements
- Passing & Returning Arrays in a Function
- Structured Data Types in Program Memory (PROGMEM)
- Data Structures

# 6. Analog-to-Digital Conversion

- MCU ADC Subsystem Features
- How it Works
- How to make an Analog to Digital conversion within the Arduino IDE

#### 7. Serial Communication

- Serial Peripheral Interface (SPI)
- 74HC595 Code Example
- Inter-Integrated Circuit (I2C)
- C++ Code Example

# **Special Topic**

- How the 3DoT Battery Powers its Robots (<u>Article by Jaap de Dood</u>)
- PID Controllers
   (PowerPoint by Jordon)
- Watchdog Timers

# **Lab Schedule**

| Lab   | Subject                                                | Pre-lab /Due             | Lab                                          | Due /Signoff        | Weeks |
|-------|--------------------------------------------------------|--------------------------|----------------------------------------------|---------------------|-------|
| Zero  | Build the Robot                                        | Tutorial(s) <sup>1</sup> | Jan 19 <sup>2</sup> to 28 <sup>3</sup>       | Feb 2 <sup>nd</sup> | 2     |
| One   | Line Follower                                          |                          | Feb 2 <sup>nd</sup> to 11 <sup>th</sup>      | Feb 11              | 2     |
| Two   | Motor Control and Fast Pulse<br>Width Modulation (PWM) |                          | Feb 16 <sup>th</sup> and 18 <sup>th</sup>    |                     | 1     |
| Three | Sensor Data as an Analog Input                         |                          | Feb 23 <sup>rd</sup> and 25 <sup>th</sup>    | Feb 25              | 1     |
| Four  | Take A Step                                            |                          | Mar 2 <sup>nd</sup> to 11 <sup>th</sup>      | Mar 11              | 2     |
| Five  | Turning                                                |                          | Mar 16 <sup>th</sup> and 18 <sup>th</sup>    | Mar 18              | 1     |
| Six   | Arrays and Data Structures                             | Mar 23                   | Mar 23 <sup>rd</sup> to Apr 8 <sup>th</sup>  | Apr 8               | 2     |
| Seven | Navigating the Maze                                    | Apr 13                   | Apr 13 <sup>th</sup> to Apr 22 <sup>nd</sup> | Apr 22              | 2     |
|       | Research / The Mission                                 |                          | Apr 27 <sup>th</sup> to May 6 <sup>th</sup>  | May 11 <sup>4</sup> | 2     |

# **Research Options**

- Arxterra Gallery of Previous Research Projects
- Pre-Arxterra Research Projects
- RoboRally Board Game, including RoboRuckus
- LDC Shield to Replace IR Sensor Shield
- Your Idea Here

<sup>&</sup>lt;sup>1</sup> See Detours in Lab 1

<sup>&</sup>lt;sup>2</sup> Order

<sup>3</sup> Build and Test

<sup>&</sup>lt;sup>4</sup> Day of the final.

#### **General Class Information**

#### **Contact Information**

Instructor — G. C. Hill
Office — ECS-519

Hours<sup>5</sup> — Monday to Thursday from 3:00 p.m. to 4:00 p.m.

Zoom by Appointment: https://csulb.zoom.us/j/81453706383

E-mail — <u>hellogaryhill@gmail.com</u>

Website(s) — <a href="https://www.arxterra.com/getting-started/">https://www.arxterra.com/getting-started/</a>, <a href="lectures">lectures</a> and <a href="leather">labs</a>

# **Class Prerequisites**

• Microprocessor Principles and Applications (EE346)

# **Class Meetings**

Lecture — Tuesday and Thursday from 9:30 to 10:20 a.m. in ECS 316

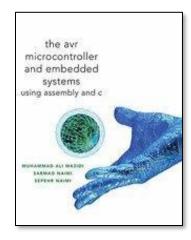
Lab — Tuesday and Thursday from 11:00 to 12:15 p.m. in ECS 316

Use Zoom ID for both lecture and lab sections.

Zoom: https://csulb.zoom.us/j/87478686235

# **Preliminary** Grading Procedure<sup>6</sup>

| Category                                         | Total |
|--------------------------------------------------|-------|
|                                                  | %     |
| Miscellaneous - Attendance, Class Participation, | 5     |
| Exams / Quizzes                                  | 45    |
| Labs / Worksheet(s)                              | 30    |
| Research or Lab Challenges                       | 10    |
| The Mission                                      | 10    |


## The Mission

| 10:15 AM to 12:15 PM | Tuesday, May 11 <sup>th</sup>       |  |
|----------------------|-------------------------------------|--|
| Zoom ID              | https://csulb.zoom.us/j/84591259550 |  |

<sup>&</sup>lt;sup>5</sup> If I am not in my office, look for me in ECS-316 and VEC-425 Please request an appointment during these hours.

<sup>&</sup>lt;sup>6</sup> See University, College and Department rules for information on withdrawing from the class. I do not give incomplete (I) grades. The percentages allocated to each category may change over the course of the semester.

#### **Materials**





Textbooks — The AVR Microcontroller and Embedded Systems using Assembly and C) by

Muhammad Ali Mazidi, Sarmad Naimi, and Sepehr Naimi

Atmel 8-bit AVR Microcontroller <u>ATmega32U4 Datasheet</u>

Reference — Atmel 8-bit AVR Microcontroller ATmega32U4 Summary

Atmel 8-bit AVR Instruction Set doc0856.pdf

AVRBeginners.Net by Christoph Redecker

Arduino in a Nutshell by Jan Borchers

Atmel AVR Assembler User Guide doc1022.pdf

Arxterra - Getting Started

Help — Humans for Robots Discord Channel

**AVR Freaks** 

Lab Supplies — Humans For Robots Maze Kit

Software — AVR Studio 4 (Recommended) or ATMEL Studio 7.

Independent of which Studio version you download, you will also need WinAVR,

and the Arduino IDE.

All download software is FREE. Labs assume AVR Studio 4.

**Fun Stuff** 

C++ to Assembly — Compiler Explorer <a href="https://godbolt.org/">https://godbolt.org/</a> Select Arduino Uno from drop-down menu.

Videos — <u>Arduino the Documentary</u>

The Game Boy, a hardware autopsy - Part 1: the CPU

The Game Boy, a hardware autopsy - Part 1.5: a few mistakes and register F

The Game Boy, a hardware autopsy - Part 2: memory mapping

Game — <u>Tessellated Intelligence System TIS100</u>

## **Plagiarism**

**COE** has a zero-tolerance policy for cheating or plagiarism. <u>Note</u>: Any time another person's work is used without giving them proper credit, it is considered plagiarism and cheating. Any individual caught cheating on quizzes, exams, homework, or lab projects will be punished. At the instructor's sole discretion one or more of the following actions may be taken.

- A requirement that the work be repeated.
- Assignment of a score of zero (0) for the specific demonstration of competence, resulting in the proportional reduction of final course grade.
- A reduction of one letter grade from your final course grade
- Assignment of a failing final grade.
- Referral to the Office of Judicial Affairs for possible probation, suspension, or expulsion.
- The official CSULB Policy on Cheating and Plagiarism can be found here: <a href="http://web.csulb.edu/divisions/aa/catalog/current/academic\_information/cheating\_plagiarism.">http://web.csulb.edu/divisions/aa/catalog/current/academic\_information/cheating\_plagiarism.</a>
   html

# **Computers and Mobile Devices**

While the following material was written for in-class lectures, it remains true for zoom meetings.

During the lecture, the computers in lab and any laptop or tablet should be used for looking at the lecture material and/or to take notes only. These devices may not be used for browsing the web or linking to any social media sites. These devices may be taken offline at the instructor's discretion.

During class, cell phones should be muted and put away (i.e., not on the tabletop, lap, floor, etc.). During guizzes and exams students will not have access to these devices.

Please ask the instructor before recording audio or taking any pictures or videos in class/lab

## **DO NOT FORGET**

Makeup quizzes and exams may be taken if you received my permission prior to the test date. Makeup tests will not be the same ones taken by the class; however, grading will be on the same curve. Absent students should notify instructors prior to each missed class by email.