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e Dendrimers

o Proliferation of tips on a single molecule:

Schematic, G3
“core-shell” copolymer

B

Zirrimer, http://ludwig.scs.uiub.edu/

o Complex self-organization for a single molecule
o Applications depend on
1 Monomer density

1 Location of tips




Hollow or Filled Core?

Hollow Core
Hervet and deGennes

o Long, flexible spacers

1 Tips segregate spontaneou

o Drug delivery

Lescanec and Muthukumar Filled Core
1 Short spacer simulation
1 Tips dense In center

- Monomers dense in center




Other theories, experiments support Filled core

deGennes, Hervet J. Phys. (Paris) 44 L351, (1983)

Potschke, et al. Macomolecules 32 4079 (1999)
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Mansfield, Macromolecules 33 8043 (2000).

Look at hollow-core model again




e a-la Hervet and deGennes:

o G generations, flexible spacers of N monomers
G = 4 example

o Excluded volume and chain entropy are the only
effects in the Hervet and deGennes calculation




e Excluded volume:

o 2nd virial, mean-field approach:

Energy to insert a monomer at r: U(F)

b5, @
) (&) ensemble average

' Vol volume fraction of monomers at r

1.2 X X
* . U = veb (M

o Total excluded volume free energy:E = ZU(Fn)
n

o What is the correct U, or ¢?




e Chain entropy

o Gaussian chain segments:

A non-uniformly stretched
/ springs
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- Self-consistent loop: Find r(n) minimizing F[r],
find &(r), repeat.

» Total free energy:F = E+S = Z%‘%
~HAn




e Further Approximations
o Chemical index n and weighting factor f(n):

Discrete
f(n) =2 f(n) = 16

qn e Smoothed

f(n) = 2

o Free energy, saddle point
8)% CN

A = ] Hd I

+V ¢<r)}

—(%[f(n);l J+f(n) ad _ [] %—b—n+v — =0

o Minimizing F gives an ordinary differential eq.




But, still need ¢ (r)

Hervet and deGennes make an approximation:

f(n) © Multiply number of equivalent chain segments by
(I) ~ dr/d o Monomer density along a single stretched strand
70N 5 BUT, need a unique r(n)

Ok If a single chain conformation dominates F.

Gives ¢ (r) growing strongly out to edge of
dendrimer.

Source of Hollow-core.

Gives a nonlinear ODE to solve numerically:

d2r . dr d(f(n)/r'(n)) _
dn2 bdn+v0 dr =0




e Polymer and Dendrimer Brush

o Polymer brush, no branchings:

O O 0o 0O

¢ is constant
Tips segregated
Scaling

Not self-
consistent

O O 0o 0O

¢ is parabolic
Ends everywhere
Self-consistent
Monodispersity is
key constraint

o Dendrimer brush quite similar:

0

dis large at
free surface
Tips segregated
Scaling

Not self-
consistent

0

0

® is still
parabolic
Endseverywhere,
concentrated at
grafting surface
Self-consistent
Monodispersity is
key constraint

o Parabolic ¢, densest at grafting surface.




Parabolic ¢ (r) i1s Correct for Dendrimers

1st order Linear ODE to solve:

d2r _dr
_ —h— + =
Iz~ °5n vor(n) 0
Harmonic potential is only self-consistent choice

possible with

r(GN) =0 r(0) = o
Trajectory always uses up GN o  Trajectory can start off
monomers to get to the core anywhere in the dendrimer

Dendrimer conformation is a result of many nearly
degenerate conformations, spreading the tips from
the center out to the edge




Results

o
o End density calculated self-consistently for G = 5:
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Interesting Structures Not in Theory

Short spacers give distinctly non-parabolic
density/ density of tips:

N=4, G=8, 2D Scheutjens and Fleer calculation

o Tip density shows

' internal structure,
void near center.

o NOT the “long-
chain, Gaussian
limit” of the
analytic theory.

o  Excluded volume
and topology of
chain




Conclusion

Hervet and deGennes model predicts Filled Core,
not hollow, core when assumptions are relaxed.

All simulations give filled core.
Experiments, too.

Filled core is IT. @
Support: Research Corporation, Petroleum
Research Fund.
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