Where have we gone with the course?

1. Observed motion in the sky -

FIXED STARS - CHANGE SLOWLY SUMMER/WINTER
MOON - PHASES CONSTELLATIONS
SUN - yEAR
5 "PLANETS" WHOSE MOTION ISN'T "CONNECTED" TO THE K'S

- Tycho Brahmas - Kepler showed laws for planet's

2. WHy Do punnets - ANY OBJEETS MDNE?

Newton's laws: Any object moves because of A
FORCE ACTNG ON IT. THe FORCE CHWGES MOMENTNM

+ Gives energy
WiTh LHW OF GRNITY, $F=\frac{G m_{1} m_{2}}{d^{2}}$ - Explains MOTION OF

3. What does Newton's Laws imply about Everything geese?

Newton's Laws Don't apr to Just punts -
Bras DO THEY APPLY FOR SMALL THINGS TOO?
ExPERIMENT + THINKING ARE ONLY WAY TO PROCEEDE.

Gases

- State of matter examples: air, oxygen gas, water "Gas" "VAPOR"
Not dense "Rarefied" - Offers lithe Resistance to MOTION

WHAT CAN YOU DO TO A GAS?
YOU CAN CONFINE IT, TRAP IT INSIDE VOLUME $=V$
PRESS IT Kapromenn with a PRESSURE = P
ADD SOME MORE, OR TAKE SOME OUT: NUMBER

$$
\begin{aligned}
& \text { NUMBER } \\
& \text { OF GAS } \\
& \text { PARTICLES }
\end{aligned}=M
$$

HEAT IT UP OR COOL IT DOWN, TEMPERMNREST
Before weget into Newton's laws, whatis the
EXPERIMENTAL SITUATION?

Atmospieric Pressure

Pressure, $P=\frac{\text { force }}{\text { AREA }}$

Pressoreg resm Block or incound is $\frac{10 \mathrm{~N} \text { owton: }}{\mathrm{m}^{2}}: 10$ "Puschc"

$$
\operatorname{lvg} \underbrace{}_{\substack{-1 \mathrm{~m}}} P_{\text {ressure }}: \frac{10 \mathrm{~N}}{(0.1 \mathrm{~m})(0.1 \mathrm{~m})}=10 \cdot 10 \cdot 10 \frac{\mathrm{~N}}{\mathrm{~m}^{2}}=1000 \mathrm{pascmL} \text {. }
$$

ATMOSPHERE HAS A WEIGHT:

FOR EACH SQUARE INCH:
How CWN You HBLD UD THIS
 WEIGHT ?

You wand BE, IF You wERE EMPTY.
SODA CAN

Under the surface of a liquid...

Here?
14 PONDS OF AIR + WEIGHT OFTHG
WATER ABOVE YOU!

$$
\begin{aligned}
& g M=0.036 \text { POUNDS FOR EVERY } \\
& \text { FOR BEL } \\
& \text { INCH BELOW } \\
& \text { SURFACE }
\end{aligned}
$$

Pressure $=P_{\text {atm }}+P_{\text {water }}$ hod together

- Bottom of a Swimming pool IN FEEL THIS PRESSURE.

Lab Experiment
What does it say about P, V, N, T ?

$$
\begin{aligned}
& N=\text { THE NUMBER OF GAS PARTICLES DID NOT } \\
& \text { CHANGE } \\
& T=\begin{array}{c}
\text { TEMPERATURE OF THE GAS DID NOT } \\
\text { CHGE }
\end{array} \\
& \begin{array}{l}
\text { PRESSURE AND VOLUME DID CITING }
\end{array}
\end{aligned}
$$

ABSTRACT

Plunger push plunder

- volume gas Down PRESSURE awes up

WHERE DOES
"PUSH" COME
FROM IN YOUR EXPERIMENT?

- Fancet pushes air W/ WATER PRESSURE$\approx 60 \mathrm{cBs} / \mathrm{NCH}^{2}$ $\therefore 3 \mathrm{dTM}$.
\square "Spring" of Air and Pressure.

AIR "SPRINGS" BACK THROUGH A CONSTANT PRECESS of colon.
\square BOYLE'S LAN TAT YOU FOUND OUT, 700

$$
P V=\text { CONST - IF } N \text { DIESN'T CHANGE } \quad \text { PTOT } N=\text { OONST }
$$

and T doesn't change.

Newtow's Laws Explain thls at a midoo scoac Level.

by maring Volome somall, Incrense \# of bounces. \therefore Pressules.

Temperature:
ballon under atmosateric pressure. Increase T, what happensto Volume?

all Extrapolate to $V=0$ at $-272^{\circ} \mathrm{C}$ ABSOLUTE ZERO.
fit absolute zero, molecules Donir moue. doit CRASH INTO THE WALL, BACON SHRINKS -

TEmperature
T controls how fast the molecules $Z_{\text {IP }}$ around:

SMALL
SPEED,
salol
Low Tenpreanure
Low Momeltual /phetcle
\rightarrow Low farce OR LOW PRESSURE

BIG MOMENTUM,
BIG FACE
HIGH PRESSURE

What does $N=$ number of patetkles Do?

Increase N, and increase collisions with THE WALL!

MaR EXPERIMENT:

$$
P V=\text { COST (WHEN NT ARE }
$$

DOUBLING N DOUBLES COLlISIONS, SO

$$
P=N \cdot \text { cAnst }(\text { WITH } V . T \text { cONSTANT })
$$

DOUBUNG T DOUBLES MOMENTUM/PARYICAL

$$
P=T \cdot \text { COST (WITH } N, V \text { cons) }
$$

ALL TOGETHER $P V=k N T$ - CAW OF IDEAL GASSES

