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5.1 Characterizing Inferences 
Most critical thinking textbooks begin with a discussion of arguments.  A central tenet structuring this text, however, is 
that one must understand and teach critical thinking tools, like the use and evaluation of arguments, against a 
background of our native patterns of thought.  Appreciating the tools introduced in a critical thinking course requires an 
understanding of their relationship to our normal cognition.  Thus, this text and lectures begins with a discussion of the 
native and artifactual means by which our brains gather information (information ecosystems).  In this chapter the text 
and lectures turn to our native information processing resources and the information processing strategies.  After a 
discussion of human inference abilities in this chapter and lecture the next chapter turns to arguments, human artifacts 
that model inferences.     
 
5.1.a The Pervasiveness of Inferences 
Humans constantly make inferences.  Sometimes humans make inferences with a full conscious awareness of the 
information and the inference steps.  For instance, when people balance their check book, they consciously follow a 
series of steps to consciously manipulate information in their working memory and on paper.  People also make 
inferences during which they possess only a partial conscious awareness of what information their brains use and what 
inferential steps their brain makes—call these inferences semi-conscious inferences.  When one drives, one makes many 
inferences, inferences about one’s speed, distance from other cars, one’s current position, relative position, etc..  Some 
of the information one utilizes makes its way into consciousness as do some of the inferential steps.  However, not all of 
the information, nor all the inferential steps, go through conscious processing.  One might notice one’s distance from 
other cars if that distance suddenly or unexpectedly changes.  A driver might consciously infer that they need to ease off 
the gas in order to keep a safe distance.  But, often drivers do not maintain conscious awareness of all such information,  

nor do drivers always consciously infer that the situation requires a 
correction.  Finally, one makes huge numbers of inferences during 
which the information and the inference steps never enter into 
consciousness.  When one identifies an object using vision, one’s 
brain makes a series of extremely complicated inferences using 
information that never enters consciousness.  Light sensitive cells in 
the back of the eye called rods and cones gather information about 
the presence or absence of light reflected from objects in the 
environment.  The information collected by rods and cones consists 
(to oversimplify) in a two-dimensional collection (array) of values.  
Thus, the brain starts with information much like the array of values 
collected by the light sensors at the back of a digital camera.  The 
brain uses this information to determine the outlines of the scene.  
It infers how those outlines go together to form objects.  It also 
reconstructs the relative positions of these objects in the third 
dimension—depth.  Considering the inferential nature of even such 
seemingly ever-present tasks as vision, therefore, can help one to 
appreciate just how pervasive a role inferences play in one’s 

everyday life.  One can likewise see that while humans perform some inferences consciously, they also perform many 
inferences only semi-consciously (only partially utilizing consciousness), and they perform many, many inferences 
unconsciously (with neither the specific information, nor the inferential steps ever reaching consciousness).  

People often fail to appreciate the pervasiveness of inference in their everyday lives.   Even while reading this text, you 
are making inferences at an unconscious level.  Your brain processes the information about the light projected from your 
computer screen or reflected from your paper into information about letters and their relative positions.  Your brain 

 
Diagram depicting the primary visual pathway responsible for the 
initial processing of visual information.  Under normal conditions, 
humans can process the information about reflected and projected 
light captured at the back of the retina into a 3-D representation of 
the visual scene and recognize objects in that scene in about 300 
milliseconds (about 1/3 of a second).  Only the final results of this 
incredible series of inferences ever make it into working memory 
and consciousness. From: manumissio 



combines these letters into words and integrates these words into sentences.  Finally, your brain determines the 
meanings of those sentences.  The inferences your brain makes to extract the content from the sentences on this page 
seems effortless, but these inferences are actually quite complex.  Huge parts of your brain continuously process visual 
stimuli in order to generate explicit and available representations of objects, properties, events, and relations in the 
environment.  

Of course, not all inferences that you perform occur unconsciously.  Some inferences, like when you multiply numbers 
using the Hindu-Arabic numeral positional method, involve consciously transforming information in a step-by-step 
fashion.   Still other inferences occur with only partial conscious awareness.  For example, when you walked to class 
today, you made a number of semi-conscious inferences:  You parked your car, inferring that it was safe to leave it in the 
spot you chose.  You inferred that class would be in the same place as always.  You inferred that you could follow the 
same sidewalk you took last time.  You saw a door, inferred that it pulls open.  At any point, you might have had to alter 
these actions because your inferences proved incorrect.  For instance, if you parked and then noticed that there was a 
sign saying “no student parking today” at the entrance to the lot, you would infer that you needed to move your car and 
it was not safe to leave it in the spot you chose. 

5.1.b What are Inferences? 
Despite the ubiquitous nature of inferences in human cognition, most people would have difficulty stating (1) the nature 
of inferences, (2) why people need them, or (3) what features or outcomes one might want to optimize in inferences.  
This section presents some answers to these three questions.  So, what are inferences?  In the most general sense, 
inferences are transformations of information available and explicit to a person or to some cognitive process.  These 
transformations use available and explicit information to create new available and explicit information.  More precisely, 
inferences take two general forms; some inferences create information previously unavailable to the person (induction), 
while other inferences make inexplicit information explicit and available for use (deduction).   

This characterization might seem abstract to the point of vacuity to some readers, so let us examine the notion a little 
more carefully with a few examples to help make things more concrete.  For starters, what do I mean by the notions of 
information being explicit and available?  An analogy might help clarify:  Suppose you go to a store looking for an item.   
A store may have the item, but the item comes in the wrong size, the wrong form, or it costs more money than you can 
afford.  The store has the item, but not in a form or price that allows you to use it.  Implicit information exists in a 
person’s brain, but not in a readily usable form, just like the incorrectly sized or too expensive item in the store.  
Therefore, one’s brain cannot use implicit information directly, without further modification.  In contrast, a person 
explicitly possesses information if they have it stored somewhere in a fashion that allows them to use it for the task at 
hand.  Put another way, one’s brain encodes that information in a manner that allows one’s brain to use it directly 
without further modification. 

Consider two different ways of writing pi: π and 3.14159….  The symbol π refers to the mathematical constant, the value 
of which is determined by the ratio of a circle's circumference to its diameter.  Using the symbol allows one to explicitly 
refer to that constant, say when writing the equation for the area of a circle:  Area = π ∙ r2.  However, the symbol does 
not make the value of that constant explicit.  As a result, one cannot calculate the area of a circle unless one uses the 
decimal approximation of pi.  The decimal approximation makes the value of the constant (partially) explicit. 

What about the notions of available and unavailable information?  Returning to the store analogy; the store may have 
the item just as needed—but if the employees have not put that item on the shelf it is not available for the moment.    
Consumers cannot buy the item unless someone makes it available by placing it on the shelf.  Similarly, one might have 
information stored somewhere, but one cannot recall it in order to use it—that information is unavailable to the person 
at the moment.  Of course, the store simply may not stock the item at all.  This too will make the item unavailable.  
Likewise, one may not have the information stored in one’s brain at all, in any form, making the information unavailable.  



Thus, information counts as explicit only if one’s brain encodes it in a manner that allows for the direct utilization of the 
information without further modification.  Information counts as available only if the information is both encoded 
explicitly and accessible immediately for use.  Explicit information, therefore, is available only if it is immediately 
accessible for use by some inference process.  Implicit information always proves unavailable, just as information not 
encoded by one’s brain proves unavailable.  

Thus, one can think of information as falling into three classes; explicitly encoded, implicitly encoded, and not encoded.  
When one’s brain has explicitly encoded information, that information exists in a form that facilitates its use in 
inferences.  Such explicitly encoded information may prove either available for immediate use in inferences, or it may 
prove unavailable in which case it remains inaccessible for inferences at that time.  When one’s brain has implicitly 
encoded information that information might exist in the brain, but not in a form that facilitates its use in inferences.  As 
a result, the information remains unavailable for inferences.  Finally, when one’s brain does not encode information, 
that information does not exist in the brain and as such proves unavailable for inferences.  The table below depicts the 
different relationships between availability and encoding.   

 
Type of Information 

Explicitly Encoded Implicitly Encoded Not Encoded 

Type of Accessibility Immediate Inaccessible Inaccessible Inaccessible 

Availability Status Available Unavailable Unavailable Unavailable 
 
It is probably easiest for students to see the notions of explicit and available information in working memory.  For 
instance, suppose your instructor came into your English class and said, “Guten morgen Klasse. Öffnen Sie bitte Ihre 
gelben Bücher.”  The instructor has given you some information.  However, unless you speak German that information is 
neither explicit nor available.  In contrast, suppose your instructor tells you, “Good morning class.  Please open your 
yellow books.” Now, the information is explicit and available for you in your working memory.  Consider another case.   

Imagine trying to remember the name of the bias 
that occurs when people preferentially seek out (or 
interpret) information to confirm their existing 
attitudes or beliefs.  You feel like the name is on the 
tip of your tongue, but you just cannot recall. In all 
likelihood the name is explicitly encoded in your long-
term memory, but it remains unavailable because 
your brain temporarily cannot transfer that 
information from long-term to working memory.   

One might think about the explicit and available 
information by imagining two chalkboards:  On one 
huge chalkboard in a back room one records 
everything that one knows in a manner that makes 
the information useful for solving problems.   The 
other, much smaller chalkboard has a different 

purpose, whenever one needs a piece of information, one goes to the back room, finds the information on the big 
chalkboard, writes that information down on the smaller chalkboard, and returns to the front room to work—the 
information on the smaller chalkboard then becomes available for use.  One cannot copy information on the small 
chalkboard that does not already exist as explicit information on the large chalkboard.  However, one can use explicit 

 
Diagram illustrating the notion of explicit information and available information. 



information from the big chalkboard to make new information explicit for further use or to transfer to the big board. The 
diagram (above) shows the various relationships we’ve just discussed. 

5.1.c What are the Functions of Inferences 
 Needless to say, even the smartest and best informed person does not have every bit of 
information they need written on their big chalkboards.  A person’s big chalkboard may not 
integrate all its information particularly well.  Likewise, one’s information might not even prove 
consistent take as a whole.  Inferences function to help people to adapt to the world by 
transforming information, by generating new information, and even by allowing one to discover 
bad information and inconsistent information in order to correct or discard those inconsistencies 
and inaccuracies.   One can find a simple illustration of inference as a transformational process in 
the way one takes two numbers and uses the Hindu-Arabic positional technique to generate their 
product.  One has explicit and available information for each multiplicand and one simply 
transforms that information to create an explicit and available representation of their product.   

Thus, inferences occur at many levels; unconsciously as with visual recognition, semi-consciously as with inferences 
about routes to take to class, as well as explicitly and consciously as when solving a math problem.  Similarly, 
information counts as available and explicit for these processes if the processes themselves can use the information in 
its current form.  For example, the light reflectance information collected by photosensitive cells at the back of the eyes 
becomes available and explicit to one’s unconscious visual processing system.  In contrast, only the products of visual 
processing are available to one’s conscious mind; the raw light reflectance information collected by photosensitive cells 
never becomes available to conscious processes.   In short, making an inference and having available and explicit 
information do not necessarily mean conscious information or conscious inferences.  Inferences are just information 
transformations and explicit, available information is just information encoded so that someone or some cognitive 
process can utilize it. 

5.1.d The Goals of Inference 
One might suppose that inferences have a single obvious goal—truth.  True, accurate, or veridical information can guide 
one’s interactions with the world in a manner that respects the world’s actual structure.  For instance, if you correctly 
believe that an assignment is due on Tuesday, you can adjust your schedule so that you complete the assignment by its 
due date.  In contrast, if you incorrectly believe the assignment is due on Wednesday, you might well fail to complete 
the assignment by its due date.  If one’s inference strategies preserve truth so that from true initial information one 
generates more true information, then one can depend upon the products of those inference strategies. 

However, an inference strategy might optimize one or more other features thereby making it better than other potential 
inference strategies.  For instance, inferential power proves very desirable in inferences.  You might recall Sherlock 
Holmes’ amazing abilities to make remarkably unobvious inferences on very little information.  Such powerful inferences 
prove both necessary and desirable in everyday life in that these inferences can greatly extend one’s initial knowledge.  
Every time one utilizes information from one’s past experiences to guide one’s actions in the present one uses inference 
to extend one’s knowledge of the past into knowledge in the future.   Likewise, when one’s brain generates 
representations of objects and their relative position in the three dimensional environment, the visual system makes a 
series of powerful inferences to transform information about two-dimensional light values into information about the 
objects reflecting or projecting that light and their relative positions in three-dimensional space.   

In fact, the human brain can make these inferences and recognize objects in about 300ms (1/3 of a second).  This 
incredible speed proves important since it allows one to quickly identify threats or needed objects.  Speed, therefore, 
represents another feature of inferences that one might want to optimize.  Speed, power, and truth…all have potential 
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value in inference strategies.  Unfortunately, a given inference strategy must usually trade-off strength in one or more 
features for strength in another feature.  Processes like vision--fast, reliable, and powerful—prove the exception in 
human inference rather than the rule.  For example, suppose that a computer science student wants to create a chess 
playing program that always ties or wins the games it plays.  One inference strategy that might seem initially promising 
would generate every possible permutation of every possible move after the initial move.  At each turn, the computer 
program would then choose its move from all those possible moves in all those possible games.  Since the computer 
now has generated explicit and available representations of how all the possible games will end, it can choose only those 
moves that would end in a win or tie.   Such a program would represent a powerful and highly reliable inference 

strategy.  However, no computer yet built has the computational resources and speed to execute 
such a program.  Thus, the “generate-all-possible games” strategy represents a non-viable 
solution to the computer science student’s chess-playing goals.  Specifically, the average chess 
game has approximately 40 moves per player.  For each player’s turn, the number of possible 
moves equals all of the moves that the rules of chess allow.  Each move, likewise, allows for a 
large number of possible counter-moves —especially at the beginning of the game.  In fact, an 
American computer scientist and cryptographer named Claude Shannon (1916-2001) has proven 
that in a single chess game, the average number of possible combinations of moves involves 10120 
possible moves.  This number of possible moves, and hence possible games, now bears the name 
the Shannon Number.1  The Shannon number poses a problem for the computer science student; 
10120 moves means that the number of all possible moves in every permutation of an average 

chess game exceeds the number of seconds since the big bang.  The computer science student’s program plays 
wonderful theoretical chess, but would prove impossibly slow for real use.2-4  

Thus, the fourth important property of an inference strategy is tractability—the potential to complete the inference in a 
reasonable amount of time (or even at all) utilizing only the available resources.  In order to survive and especially to 
thrive humans need to solve the problems that confront them.  As the discussions of various inferences and inference 
strategies unfold in the chapters, one theme that appears time and time again is that inference strategies almost always 
represent some trade-off between truth preservation, inferential power, speed, and/or tractability.  As a result, all 
inference strategies have strengths and weaknesses—costs and benefits. 

Indeed, of the various potentially desirable properties of inference strategies tractability might well prove the most 
basic.  Your brain always tries to find a solution to problems—even if the solution isn’t perfect.  People exhibit stress 
responses when confronted with unsolvable problems—some researchers even suppose that subjects develop the 
classic stress response, learned helplessness, when confronted with unsolvable problems.5-7  Successful problem solving 
and decision-making has also been shown to activate the brain’s reward system, whereas failure triggers a differential 
response.8-10  Such findings suggest that the brain has a solutions imperative, a strong desire to solve problems and/or 
avoid unsolvable problems.   

5.2 Innate Reasoning Abilities: Origins and Elements 
To understand human inference abilities one must first understand the origins of those abilities.  Indeed, the origins of 
humans has greatly shaped two central elements of human inference abilities—the human brain and the native 
strategies the brain employs to make the vast majority of inferences.  By understanding the origins of human inference 
abilities one can understand the forces that shaped both the brain’s inference capacities and the innate strategies that 
drive the majority of human inferences.  Such an understanding of the human brain’s inference capacities and strategies 
allows one to recognize the strengths and weaknesses of native human inference abilities.  I begin this section by 
discussing the origins of humans and proto-humans (called Hominini by scientists11).  The general, long-term 
environmental features and inferential challenges during Hominini evolution have shaped both the human brain and the 
inference strategies that modern humans employ to solve problems in the contemporary world. 

 
Claude Shannon (1916-2001)  

From: netzspannung.org 
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5.2.a Human Origins 
So, how did human inference abilities evolve and what assumptions do they embody?  Most inference abilities probably 
evolved during the hunter-gatherer phase of Hominini (human and proto-human) evolution.  Scientists now theorize 
that this period of Hominini existence lasted for approximately 4.4 million years to 7 million years.  The exact period 
depends upon which of the candidate fossil species one includes as Hominini and which species fall into the common 
human/ape lineage. If one includes proto-humans like the hominoid recently discovered in current-day Ethiopia named 
“Ardi” (Ardipithecus ramidus), the period extends to about 4.4 million years.12-26  If one includes the fossil species 
Sahelanthropus tchadensis, then the period extends to over 7 million years.22   As one follows the fossil record of 
Homininis one notes most species engaged in subsistence foraging and hunting.  For instance, ample evidence exists 
characterizing the lives of Homo erctus 1.8 million years ago as well as the Homo sapiens starting around 200,000 years 
ago as surviving by subsistence foraging and hunting.23, 24  The hunter-gatherer existence represents the exclusive mode 
of human existence until a mere 10,000 years ago when the Mesolithic era ended.20  The Neolithic Revolution marks the 
end of the Mesolithic era and signals the slow spread of humans who domesticate animals, develop agriculture, and live 
in larger, relatively permanent groups.25, 26 

Scientists currently hypothesize that human languages develop during the Paleolithic Era approximately 100,000 to 
50,000 years ago.27-33  Proto-written language does not develop until approximately 8600 years ago.  Alphabetic 
languages date to approximately 3100 years ago.  Thus, the advantages of language—the ability to externalize memory 
and to share relatively complex and large amounts of information between individuals and across time--likely do not 
play a major role in shaping the human brain and inference abilities.  Written language dramatically impacts human 
thriving, but it emerges far too recently to affect human evolution.   One might find this conclusion relatively unintuitive 
given the integral role that language—spoken and written—plays in contemporary life.  Nevertheless, a substantial body 
of scientific research seems relatively homogeneous in concluding that language has only shaped human thinking for a 
relatively short period of time of the limited period during which. 

In the hunter-gatherer era humans make inferences about, for instance, the likelihood and/or relative incidence of 
objects, properties, and events just as we do today.  However, the typical hunter-gatherer environment differs from our 
own.  Hunter-gatherers have short lives and few tools or other artifacts.  Hunter-gathers live in small groups relatively 
isolated from most other proto-humans.  As a result, the environment in which they solve problems proves relatively 
small.  With no means of travel besides walking, most Hominini likely travel only 30 miles or so from their birthplace.  
Though major changes occur during the 4.4 to 7 million years of Hominini hunter-gather existence—ice ages, for 
example—most Hominini do not live long enough to experience much change.  The mean hunter-gatherer lifespan is 
probably 21-37 years.34  Approximately 60% live past 15, and of those who live past 15 approximately 60% live to 45 
(between 23% and 43% total).   Since Hominini have little technological development and short lives their environment 
proves pretty stable during their lifetime.  In similar fashion, a small, stable environment means that a hunter-gatherer 
likely solves problems in a relatively homogeneous environment.  That is, things do not vary much from one part of their 
environment to another or even during the course of their relatively short lives.  Thus, researchers characterize the 
environment in which individual humans and proto-humans solve problems for something like 7 to 4.4 million years as 
relatively small, stable, and homogenous.  In such an environment, an individual Hominini’s experiences probably 
represent pretty accurate samplings of the environment overall.  Similarly, since the environment remains stable and 
homogenous during an individual hunter-gatherer’s lifetime, their inferences are largely reactions to the specific 
problems at hand.  That is, their inferences need to work for the specific content (problem) and context (situation). 

Thus, researchers characterize the environment in which humans and proto-humans solve problems for something like 7 
to 4.4 million years as relatively small, stable, and homogenous.  In such an environment, an individual human’s 
experiences provide them with fairly accurate samplings of the environment overall.   Their experiences, in other words, 
are likely typical of the sorts of situations and problems that they will encounter.  In similar fashion, typical Hominini 
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problem-solving likely revolves around reactive and rather immediate responses to specific contents (problems) and in 
specific contexts (situations).  Most problems probably involve objects and events in the immediate physical 
environment and in the current moment.  Researchers have found very little evidence to suggest that most species of 
Hominini plan far into the future.  Rather, they probably live in the here-and-now.  Likewise, nearly all species of 
Hominini have extremely limited abilities to share information and to externalize information.  In other words, their 
inferences must rely primarily upon their own sensory information in combination with long-term and working memory.  
 
5.2.b Two Elements of Inference Ability: The Brain and The Inference Strategies 
Though it might seem counterintuitive to contemporary humans, the human brain—like the brains of vertebrates 
generally—evolved to optimize problem-solving and decision-making of a reactive and rather immediate nature.  One 
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Diagram illustrating the various fossil specimens classified by their relationship to/within the Hominin taxonomy and the era during which scientists suppose that they 
flourished.  From:  Wood’s and Baker’s Evolution in the Genus Homo.14 
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design choice selected by evolution to optimize performance in such circumstances utilizes specialized brain systems to 
quickly and reliably gather information from the environment with relatively little conscious input.  Thus, humans can 
recognize an object very quickly without much conscious effort.  However, the brain also employs a second design 
choice of a quite different nature—conscious inferences employing working memory.  The remainder of this chapter and 
lecture will discuss these two strategies, how and when they collaborate, when they fail, and when they fail to interact 
with each other.  

5.2.b.1 The Brain: Conscious vs Unconscious Inference 
Each of the brain’s native strategies has its strengths and weaknesses.  Unconscious inference strategies are automatic, 
relatively fast, they can often handle larger and more complex bodies of information, and they tend to be robust.  
However, they can also prove relatively inflexible, especially when the problem violates one or more of the assumptions 
implicitly driving that approach to inferences.  In contrast, conscious inferences tend to exhibit greater flexibility and 
adaptability.  But conscious inference strategies prove resource intensive and can only handle a very limited amount of 
relatively simple information.  Unlike unconscious inferences, which occur throughout the brain, conscious inferences as 
well as conscious components of semi-conscious inferences rely upon working memory.  It makes sense, therefore, to 
discuss what psychologists and neuroscientists currently know about working memory.  However, before turning to 
working memory, the chapter and lecture discuss the relationship between conscious and unconscious inference.  The 
discussion highlights the relative numbers and complexity of inferences performed unconsciously vs consciously.  
Students likely exhibit a common bias towards supposing that most inferences occur consciously.  However, as the next 
section indicates, most inferences—especially complex inferences occur outside out conscious awareness.  Working 
memory provides humans with conscious access to the final products of many of these unconscious processes, but it 
rarely captures more than a tiny portion of the inference or the information involved in the inference.  
 
5.2.b.2 Most Inferences are Made Unconsciously 
The idea that conscious inferences constitute a miniscule portion of the inferential life of the brain and the  

information processed consciously by the brain, strikes 
many students as contradicting their lived experiences.  
So, some illustrations seem in order.  By now early 
vision is a familiar example in the text and lectures.  Let 
us start there.  None of the information or inferences 
discussed above in the processing of early vision enters 
working memory or consciousness until a small portion 
of the final products become accessible through 
working memory.  For instance, humans have absolutely 
no conscious access to the initial light-intensity 
information collected by 120 million photosensitive 
receptors in each eye, nor can working memory access 
the inferences and information that occur in the eye, 
the lateral geniculate nucleus, and the striate cortex.   

Only when visual information enters into the parietal and temporal cortexes can elements of the visual scene potentially 
enter into consciousness; even then, only a very, very small percentage of that information can actually enter into 
working memory at any given moment.  In order for even that small bit of the processed visual information to enter 
consciousness a person must focus their attention upon it.  For instance, the picture (left above) illustrates just how little 
of the visual scene can actually make it into consciousness at any one time.  You may seem to see all of the coffee beans 
in the picture, but do you see the face of Jason Statham?  Most people have difficulty finding Statham’s face even when 
carefully searching the picture. 

 
Can you find Jason Statham’s face in the coffee beans?  From: The Huffington Post 

http://www.huffingtonpost.co.uk/2015/12/30/coffee-bean-illusion_n_6105952.html


Consider another example: Unconscious inference processes like 
vision tend to operate automatically and robustly. However, 
what happens when one or more of the assumptions implicit in 
vision is violated?  The movie (left) gives an excellent example of 
how even vision can prove unreliable when a situation violates 
even one assumption implicit in its operation.   The movie also 
illustrates the difficulties in modifying automatic and 
unconscious processes when some situation violates their 
underlying assumptions.  Even though the basketball players can 
easily detect the problem resulting from the shift in their visual 
image, they cannot simply and immediately adapt their shooting.  
When practice allows them to adapt, removing the glasses again 
causes them to miss their shots.   Lest students think that visual 
processing proves the exception to the rule, consider the words 

of researchers John Bargh and Tanya Chartrand from their aptly named article, The Unbearable Automaticity of Being:35 
 
Our thesis here—that most of a person's everyday life is determined not by their conscious intentions and 
deliberate choices but by mental processes that are put into motion by features of the environment and that 
operate outside of conscious awareness and guidance—is a difficult one for people to accept. (p.462) 

 
For instance, facial characteristics like pupil dilation, averageness (mean values) of features, symmetry of features, skin 
color, skin texture, as well as gender-specific dimorphisms (two forms distinct in structure within a single species) 
heavily influence judgments of attractiveness despite typically playing no role in conscious explanations of facial 
attractiveness.36-45  Additionally, situational and idiosyncratic factors like familiarity during development (humans exhibit 
a genetic disposition towards incest avoidance), dissimilarities in major histocompatibility complex (humans appear to  
find potential suitors with different immune responses more attractive), hormone levels (fertility cycles in women 

appear to affect the features that drive attraction in both 
genders)peer evaluations, self-perceptions (of attractiveness and 
personality characteristics), social status, and social learning all 
modulate impact of physical facial features without being included 
in people’s conscious explanations of facial attractiveness.41, 42, 46-51 
 
Consider the unconscious processing involved in identifying one’s 
body and its place in space relative to other objects.  Everyone has 
had the experience of identifying some object to grab, looking 
away while grabbing it, and fumbling the pick-up.  The video (left) 
shows just how dissociable conscious perceptions of our body are 
from our brain’s inferences about the locations of our body parts.  

 
5.2.b.3 Conscious Inference Requires Working Memory 
So, the examples in the last section of this chapter illustrate the enormous volume of information and the complexity of 
information that the gets processed unconsciously by the human brain.  What about conscious inferences and the 
conscious aspects of semi-conscious inferences?  All such inferences utilize working memory.  What, then, is working 
memory and what do psychologists and neuroscientists currently know about working memory?  Psychologists and 
neuroscientists currently know quite a lot about working memory!  But, as with unconscious inferences, the answers 
scientists offer differ quite significantly from what students might expect.  To start, one might suppose that working 
memory functions as a simple container in which the brain stores shorter-term memories.  This supposition, in fact, does 

 
Video illustrating the dissociation between conscious perception of 
object position when wearing prismatic glasses and the unconscious 
adaptation of the brain despite no conscious adaptation.  From: Youtube 

 
Video illustrating an illusion of bodily location.  From: Youtube 

https://www.youtube.com/watch?v=eA2d1tKNFoU
https://www.youtube.com/watch?v=sxwn1w7MJvk










not reflect the most common model of working memory.  Most psychologists and neuroscientists have adopted the 
“multi-component model” of working memory.  So, how does the multi-component model differ from the little 
chalkboard used in the analogy earlier in the chapter?  Are there just multiple little chalkboards? 
 
The origins of the multi-component model of working memory date back to a 1974 paper by Allen Baddeley and Graham 
Hitch.52  In that paper Baddeley and Hitch tell readers that their model conceives of working memory as single common 
system composed of multiple sub-systems.  That linked collection of subsystems is “limited in capacity and operates 
across a range of tasks involving different processing codes and different input modalities.”52 (p.35)  By 2003 Baddeley 
refines his initial model into the one depicted in the diagram (above) and researchers start to determine what areas of 
the brain are responsible for the various components and operations depicted in the model.  Baddeley’s model includes 
 

 
Diagram depicting the Baddeley multi-component model of working memory adapted from his 2003 diagram.53 

 
three different memory stores; the visuospatial sketch pad, the phonological loop, and the episodic buffer.  Each of 
these memory stores holds a specific kind of information represented in a specific manner.   The visuospatial sketch pad 
(VSP) stores visual and spatial information in a non-verbal format that encodes features and objects which it can bind 
together into visual objects.  For instance, the VSP would encode a red triangle by binding its representation of redness 
and its representation of triangularity.  Information enters the visuospatial sketch pad (VSP) when the visual system 
attends to it.  Once in the visuospatial sketch pad, information will degrade if not maintained by processes called the 
visual and spatial scribes, which are intimately related to attention.53, 54  The phonological loop stores acoustic and/or 
phonological and order information.  The phonological loop is implicated in human language learning.  Once information 
enters into the phonological loop it will degrade relatively quickly unless maintained by the process of articulatory 
rehearsal.  For example, once you hear a series of numbers you must rehearse those numbers to maintain them in the 



phonological loop.  The final working memory store, the episodic buffer, encodes information in a complex multi-model 
format as scenes or episodes.  The episodic buffer, under the control of the central executive, transfers and translates 
information between the phonological loop and the visuospatial sketch pad.  The episodic buffer likewise combines 
information into complex scene and episode representations that it can manipulate to consciously solve problems in 
parallel and serial fashion.   Additionally, the episodic buffer facilitates information transfer between long-term memory 
(LTM) and working memory.53, 54   
 
Finally, the central executive directs information flow among the component stores within working memory and 
between working memory and long-term memory when such transfers are not habitual.  The central executive, directs 
attention to specific information, suppresses distractions, inhibits inappropriate actions and information, coordinates 
processing for a task, and coordinates between tasks when multi- tasking.53, 54 

 
Students interested in the 
hypothesized anatomical 
embodiment of the various 
working memory modules in 
Baddeley’s model of working 
memory can consult the 
diagram (left).  Consistent 
with the multi-component 
model, sub-systems of 
working memory appear to 
have distinct anatomical 
centers.  Also consistent with 
its integrative nature, working 
memory draws information 

from every cortical brain region (lobe) and both brain hemispheres as well as the cerebellum.53, 54 
 
5.2.b.3.a Working Memory is Relatively Small 
Earlier chapters note that working memory has somewhat severe limitations on the amount of information and the 
complexity of information it can store and/or process.  The specific limitations depend upon the specific memory stores 
within working memory.  The number of individual items available in the phonological loop of working memory ranges 
between five and eight items of rather limited complexity.  In contrast, the iconic memory of the visual system contains 
and briefly stores, for instance, information about the entire visual scene in the visual cortex.  It makes massive, highly 
complex inferences with this initial data even before any information leaves the eye via the optic nerve. 
 
5.2.b.3.b Limits on Amount and Complexity of Information in Working Memory 
Measures of working memory that indicate a capacity ranging between five and nine items predate the concept of 
working memory itself.55  Probably the most famous measure of working memory capacity appears in George Miller’s 
1956 paper, “The Magic Number Seven, Plus or Minus Two.”56, 57  Contemporary researchers tie capacity estimates for 
working memory to the specific component of working memory as well as the complexity of information.  For instance, 
researchers estimate the capacity of the phonological loop to store words ranges from three elements to eight.  
However, the number of items varies with their length in that the number of words one can store decreases as the time 
it takes to speak those words increases.  Likewise, the capacity of the phonological loop for stored words decreases for 
very similar-sounding words, and increases for dissimilar-sounding words.  In short, more complex items exhaust 
capacity sooner.  Cognizers can mitigate these limits somewhat by chunking information items together.  For example, 

 
Diagram depicting the various areas of the brain associated with specific components of the multiple-components 
model of working memory.  CE = Central Executive, AR = Articulatory Rehearsal, IS =Visual Scribe, PS= Phonological 
Store, VC = Visual Stetchpad  From: Baddeley 2003.53 



remembering sequences of three-digit chunks often allows one to remember more digits than remembering each digit 
individually.54, 56, 58  Measures of the capacity of the visual component of the visuospatial sketch pad currently place the 
number of items between three to four items having one to four kinds of features.  Within this framework individual 
item complexity does not seem to affect capacity.  However, visual working memory capacity appears to have a hard 
limit of three to four items.54, 59-61    
 
Students who wonder if one might overcome the limits in information capacities just discussed by, for instance, brain 
training will find little support in current scientific research.  Most research suggests that the amount and complexity of 
information one can store in working memory has strong genetic determinants.62-65  Training on specific tasks often 
improves performance on that task.  However, improvements in a specific task do not appear to transfer to improved 
performance overall.  Nor do task-specific performance improvements tend to last after training stops.  Moreover, like 
many cognitive functions, the capacity of working memory appears to decrease with age.66, 67  Some evidence suggests 
that brain training (and generally having an active intellect) might mitigate age-related declines in working memory.   
 
Finally, measures of working memory capacity are strongly related to fluid intelligence—the ability engage in adaptive 
problem solving and decision-making as well as spotting patterns in experience, particularly in novel, uncertain, and low-
information contexts.68  In psychological parlance, working memory capacity explains most of the variance between 
individual levels of fluid intelligence.  Roughly speaking, the greater the capacity of various components of a person’s 
working memory, the greater the level of fluid intelligence the person exhibits in tasks related to that capacity.  
Alternatively, working memory generally serves as a bottleneck in cognitive processing, limiting the amount and 
complexity of information an individual can utilize in conscious problem-solving. 
 
5.3 Human Inference Strategies and their Typical Deployment 
So far the discussion in this chapter and lecture characterize inferences and the properties that can distinguish good  

 inferences from less useful inferences.  It then 
distinguishes between two strategies employed by 
the human brain in making inferences—unconscious 
and conscious strategies.   Important and interesting 
questions might occur to readers when contemplating 
these strategies.  For instance, students might 
wonder, “do human inferences tend to have these 
properties?”  Students might likewise ask “which 
strategy proves better?”  To answer these questions, I 
find it useful to differentiate (divide or classify) 
human inference strategies into three different 
classes--three tiers of human reasoning abilities.  
Psychologists further categorize these classes of 
human inference strategies into two relatively 
independent systems for human inference.  However, 
the term “system” proves somewhat misleading in 
that the categories do not actually pick out 
determinate, fixed brain systems like the category, 
“primary visual pathway.”  Rather, these two 
inference categories represent different strategies for 
making inferences and decisions.69-71  Vinod Goel 

suggests the following characterization of the data from neuroscience:70 

 
Diagram depicting the three kinds of inference strategies deployed by human beings, 
the relative likelihood of each being used in a given circumstance, and the relative 
general reliability of each kind of strategy.  The two tiers (classes of inference) in blue 
collectively form what many psychologists call System 1.  System 1 strategies share the 
properties of (a) automaticity (they work automatically without having to think about or 
choose them) (b) contextualization (i.e., System 1 inference strategies operate by 
bringing contextual and content-relevant information to bear on the problem), as well 
as operating associatively.  System 1 strategies exhibit (c) autonomy, meaning that they 
tend not to draw heavily on working memory.  As a result, people exhibit limited 
conscious awareness, oversight, and insight.  In contrast to the inference strategies in 
System 1, System 2 inference strategies include only the third tier or class of inference 
strategies, learned rules, depicted in green.  The inference processes in System 2 
require conscious awareness to choose and conscious attention to execute.  Click on 
diagram to display animated version.   







 
In particular, we need to confront the possibility that there might be no unitary reasoning system in the brain. 
Rather, the evidence points to a fractionated system that is dynamically configured in response to certain task and 
environmental cues. The three lines of demarcation reviewed above include (i) systems for heuristic and formal 
processes (with evidence for some degree of content specificity in the heuristic system); (ii) conflict 
detection/resolution systems; and (iii) systems for dealing with certain and uncertain inferences. There are 
undoubtedly others. (p.440) 

 
The misleading connotations of these categories led researchers to propose alternative names, though none has gained 
wide acceptance.  Daniel Kahneman often uses the terms “fast” and “slow.”72  Jonathan Evans and Keith Stanovich adopt 
the categories “type1” and “type2.”73  Other researchers like Adam Darlow and Steven Sloman adopt the categories 
“intuitive” and “deliberative.”74   
 
5.3.a What are General Heuristics? 
To understand general heuristics one must first understand term “heuristics.”  In practice, psychologists call replicable 
methods or practices directing one’s attention in learning, discovery, or problem-solving “heuristics.”   Pappus of 
Alexandria, an Greek Mathematician, first introduced the term, which comes from the Greek “heurisko”, meaning “I 
find.”75  Psychologists and computer scientists both call simple, efficient rules of thumb “heuristics” or “heuristic 
knowledge.”   One employs a heuristic when confronted with a complex problem or when one has incomplete or 
partially inaccurate information.  In other words, a heuristic represents a strategy that trades a degree of truth-
preservation in one’s inference in order to gain the inferential power, speed, or tractability necessary to generate an 
answer.  As we will see, heuristics tend to implicitly presuppose certain facts about the world and/or the problem in 
order to facilitate a solution.  Ideally, these implicit presuppositions prove true most of the time, though such 
presuppositions often have significant exceptions.  As a result, heuristics can work well under most circumstances, but in 
certain cases reliance of heuristics leads to systematic errors in reasoning. 
 
Thus, the first tier of inference strategies, general heuristics, consists of inference strategies one utilizes in general 
problem solving (that’s the general part) and which involve the implicit presupposition of various features about the 
problem or the world in order to generate solutions in a timely fashion given the information available (that’s the 
heuristic part).  For example, Amos Tversky and Daniel Kahneman famously for formulate the native judgment heuristics 
humans seem to employ for estimating probability and revising such estimates.76-81  Like all System 1 inference 
strategies, one does not choose or monitor judgment heuristics consciously.  Indeed, one exhibits extremely limited 
conscious awareness of their use, much less insight into, or oversight of their functioning.  Finally, judgment heuristics 
implicitly rely upon assumptions regarding the nature of the world to facilitate their functioning.  As a result, though 
heuristics often prove useful, they sometimes they lead to systematic errors.  Errors arise most often when the 
conditions under which one employs a heuristic vary dramatically from the conditions under which the heuristic 
evolved.  That is, these heuristics implicitly make assumptions designed to facilitate problem-solving in the environment 
that leads to their selection.  Whenever the conditions or current use violate those assumptions, one can expect to see 
systematic errors result from the use of judgment heuristics. 
 
5.3.b System 1 
The first two tiers or classes of inference strategies encompass strategies that represent part of the human native brain 
architecture and functioning.  In other words, many of these inference processes are innate, developing without any 
explicit instruction.  These inference processes also operate relatively automatically with little conscious oversight.  For 
this reason, psychologists tend to group them together into a single system, often called “system 1” or “type 1.”73, 82, 83  
Thus, System 1 includes context-dependent reasoning strategies as well as general heuristics in the diagram above.  
System 1 processes tend to share several properties, such as, (1) automaticity (they work automatically without having 

https://en.wikipedia.org/wiki/Pappus_of_Alexandria
https://en.wikipedia.org/wiki/Pappus_of_Alexandria
https://en.wikipedia.org/wiki/Amos_Tversky
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to think about or choose them).  In fact, (1a) many of these inference patterns are innate, emerging as part of normal 
development, though in some cases learned strategies become consolidated and automated by the brain over time 
thereby reducing or eliminating the need for attention.84  System 1 processes exhibit (2) autonomy in that they operate 
largely outside of working memory.  As a result, people tend to exhibit limited conscious (2a) awareness, (2b) oversight, 
and (2c) insight into the operation of System 1 processes.  In other words, (1) one employs a System 1 inference as a 
natural reaction to a situation and (2a) without having a conscious awareness of doing so.  One has very little (2b) ability 
to affect the operation of a heuristic and (2c) very little insight into how one actually solves the problem.   System 1 
processes also tend to exhibit high levels of (3) contextualization and often (4) function associatively.  That is, these 
processes tend to rely heavily information regarding the specific objects, properties, etc., involved in the current 
situation and the manner in which that situation presents those objects, properties, and etc..  Likewise, System 1 
processes often operate by associating problem elements (for example, associating similar items or the past with the 
present).  One can better understand contextualization and associative processing by considering two different 
approaches to shooting projectiles like arrows.  One often learns basic archery in a highly contextualized manner.  To 
wit, one learns using a specific bow and set of arrows.  While underlying structural features like the force transferred to 
the arrow from the bow, wind resistance, the arrow’s mass, etc. determine the distance and accuracy of a given shot, 
these underlying structural features remain largely implicit in determining a given shot.  Instead of explicitly 
representing these structural features and their relationships an archer learns to implicitly associate these features and 
their relationships through repetition and practice.  The resulting ability of the archer becomes attuned to the specific  
context and content—their bow and arrows and their typical shooting conditions—and the associations they have 
developed through repetition and practice.  As a result, the archer may well need to recalibrate if they get a different 
bow, different arrows, or if they are shooting in novel or unusual conditions—just as we say the basketball players do 
when they put on the prismatic goggles in the video in section 5.2.b.2 above.  

For example, suppose that you need to buy a birthday present for your mom.  You might look through a webpage from a 
store and make judgments about whether she would like various items.  You might well make these judgments by 
employing the representativeness heuristic discussed below.  That is, you judge the probability that she will like an item 
by unconsciously comparing it (4) to your concept (understanding) of your mom’s taste. You do this (1) as a natural 
inferential disposition that automatically activates (2) without any awareness that you have reacted to the task by 
automatically employing the representativeness heuristic.  The representativeness heuristic generates these judgments 
by drawing upon information that you would probably have great difficulty articulating explicitly and overtly, and that 
you would likely not list as your reasons for your judgment.  Moreover, you likely would have great difficulty altering 
your innate disposition to use the representativeness heuristic in such cases without consciously inhibiting its use and 
explicitly employing a different strategy.  You likewise exert little to no control over the information upon which the 
heuristic draws.  Finally, since the representativeness heuristic relies heavily upon the content and context of an 
inferential situation (3), your shopping inference would prove quite different were you shopping for someone else, say, 
your father.  Your search through potential gifts would also very likely go differently if you were in a mall as opposed to 
sitting at home.  You probably will not consider possible gifts, for instance, that the site does not explicitly present for 
your consideration.  So, both the content (in the form of the nature of the objects about which you make the inference 
and the person for whom you are shopping) and the context (in the form of the shopping venue) influence your 
inferences.  Likewise, the context in the form of the features of the situation in which you make the inference will 
influence the inference.  For example, you might think differently in the context of Christmas shopping as opposed to 
birthday shopping or Mother’s Day shopping.  Likewise, if you just paid a big bill you might gravitate towards lower 
priced gifts, while you might spend more if you just got a big bonus.  Indeed, the range of prices for those potential gifts 
and the order in which you consider those potential gifts will likely affect your choice as well.   

In summary, both one’s general heuristics and one’s context-dependent strategies consist of native inferential and 
decision-making dispositions operating automatically in reaction to problems one encounters.  These strategies exhibit 



very limited conscious awareness, oversight, and insight in their operations because they operate largely outside of 
working memory.  These dispositions rely heavily upon information regarding the specific problem and the specific 
manner in which the problem is presented in experience.  Finally, these dispositions often operate through the slow 
accretion of information about useful associations between the specific objects, properties, and relationships from 
similar contexts in the past.  Thus, psychologists often characterize these processes as forming one strategy or approach 
to inference—System 1.  One can think of the inference strategies characteristic of System 1 by analogy with the 
development of search engines and personalization algorithms for the internet.  Both System 1 inferences and search 
engines represent strategies for quickly and efficiently processing large amounts of often complex information.  Both 
accomplish their tasks largely by relying upon heuristic assumptions and specialized systems that operate largely outside 
the awareness of end users.  

5.3.c System 2 
In contrast to System 1, psychologists differentiate a second class of human inference and decision-making processes 
that embody a different problem-solving strategy—System 2.  System 2 encompasses the third and final tier or class of 
human inference strategies in the above diagram--consciously executed inference strategies. Unlike System 1 inference 
strategies, System 2 strategies tend to rely heavily on working memory and require conscious effort—both in deciding to 
use the strategy and in executing the strategy.  For instance, towards the end of the term students will learn how to use 
Bayes’ Theorem to infer how a new piece of information affects a previous estimate of the probability of an event.   
Naturally, since one tends to deploy these inference strategies consciously one has much more ready access to their 
functioning when one uses them in problem solving.  System 2 inference and decision processes tend to be learned and 
often leverage underlying structural features common to a class of inference or decision problems to generate a 
solution.  Thus, psychologists categorize these processes as separate strategy for solving problems—System 2. 
 
5.3.d The Relationship Between System 1 and System 2 
The above diagram illustrates two important points about these two inferential and decision-making strategies and how  

processes implementing the strategies from each 
system function in human reasoning.  Specifically, 
the probability that one will employ a System 1 
process to solve a given problem far exceeds the 
likelihood that one will employ a System 2 strategy.  
However, if one looks at the general reliability of 
these processes the reverse relationship holds—
System 2 strategies (e.x. learned rules) tend to have 
a higher general reliability than System 1 strategies.  
In short, the inconvenient truth of human reasoning 
consists in the fact that one is more likely to use a 
less generally reliable inference strategy to solve a 
given problem!   Worse still, as mentioned in the 
discussion of critical thinking, innate, genetically 
determined features of one’s brain create this 
disposition toward employing less generally reliable 
strategies.  As a result, one cannot significantly 
temper one’s predilection to employ less generally 
reliable inference strategies since one cannot 

significantly alter the genetically determined architecture and dispositional functioning of one’s brain.   While reasoners 
can inhibit these System 1 processes and employ more appropriate System 2 strategies, fact that System 1 operates 

 
Diagram depicting the two human inference categories and their respective properties System 
1 consists of both general heuristics and context dependent inference strategies. This system 
has evolved so that humans have innate dispositions that automatically engage when humans 
face a problem. System 1 processes tend to contextualize the problem by relying upon the 
specific context and content of the problem. System 1 inferences require little conscious 
awareness and oversight to operate. As a result, these strategies allow for very little conscious 
access into their functioning and very little conscious oversight of their operations. System 2 
inference processes, in contrast, draw more heavily on working memory and are learned. They 
require conscious awareness and oversight to operate. System 2 inferences are not 
automatically engaged. Indeed, they often prove difficult to engage. However, they tend to 
compensate for weaknesses inherent in System 1 processes and prove more generally reliable 
because they tend embody more decontextualized solution strategies. System 2 inference 
strategies also provide humans with greater conscious insight and oversight into their 
functioning. Click diagram for video depicting the potential roles of each category.  







largely outside of conscious awareness coupled with the severe limitations of working memory dictate that System 2 
interventions prove much less common and much more difficult.  In general, humans can actively intervene only when 
(1) an appropriate System 2 process is readily available and either (2a) the context of the inference or decision suggests 
the appropriateness of the System 2 process or (2b) the failure or inadequacy of the System 1 solution becomes 
manifest.    The relationship between System 1 and System 2 is much like that of the relationship between a train and 
the train’s distractible engineer.  Once engaged System 1, like the train, barrels down its predetermined track towards a 
solution.  Like a train’s engineer, System 2 monitors and modulates System 1 to avoid or at least minimize potential 
problems.  But, like the distractible engineer, System 1 proves inadequate to regularly and reliably detect and deter any 
but the most obvious obstacles to optimal inferences and decisions.  The next sections, discuss each of the two tiers or 
classes of inference strategies in System 1, giving several illustrative examples of strategies from each tier. 

5.4 Innate Reasoning Abilities, Inabilities, & Biases: Two Types of Inferences 
The last section suggests that one can distinguish System 1 inference and decision strategies from System 2 strategies by 
noticing that System 1 strategies represent genetically encoded dispositions to develop specific patterns of brain 
functioning and cognitive architecture solutions originating in evolutionary selection in response to a specific kind of 
environment and set of problems.  In contrast, many of the most important and widespread System 2 inference 
strategies have their origins in the cultural heritage of the last approximately 10,000-12,000 years—with the greatest 
number of these strategies emerging within the last few hundred years.  Reasoners must learn System 2 inference 
strategies—often from others--and reasoners must consciously choose to employ those strategies.  In addition to 
distinguishing between two different sources whereby humans acquire their reasoning abilities, one can also distinguish 
between the two major classes (kinds) of inferences that humans make.  One can base this second distinction on the 
relationship between the truth of initial information for an inference and the truth of the information resulting from the 
transformation of that information through the inferential process.  Logicians call the two classes of inferences 
deductive inference and inductive inference.   

5.4.a Deductive Inferences 
Deductive inferences work to preserve the truth of the initial information across the inferential transformation.  Thus, 
good deductive inferences (valid deductive inferences) have a structure such that if one begins with true initial 
information, the inferential transformation generates necessarily true information as the transformational outcome.  
Deductive inferences, as a result, only reveal what must be true given the truth of one’s initial information.  In one 
sense, then, deductive inferences do not increase a reasoner’s stock of truths.  Yet, in another sense, deductive systems 
do increase the reasoner’s stock of truths.  Specifically, deductive inferences transform implicit and unavailable truths in 
 the reasoner’s stock of information into explicit and 
available truths.  So, deductive inferences serve a very 
useful purpose despite only revealing what must 
already be true given the truth of one’s current 
information.  Logicians and philosophers call such 
inferences non-ampliative in that these inferences do 
not increase (amplify) the number of potential truths 
(explicit and inexplicit information) that the reasoner 
possesses.  
 
Furthermore, deductive inferences also serve another 
important function: Deductive inferences can help to 
render one’s beliefs and worldview systematic and 
consistent.  When one’s worldview contains 
inconsistent beliefs, it contains beliefs that cannot all be true at the same time.  When one’s worldview contains 

 
Diagram depicting deductive inferences in terms of the relationship between the initial 
information explicit and available to the reasoner and the information generated by 
the inferential transformation.  Click on image to see animation. 







contradictions, then one’s worldview contains beliefs the truth of which would imply the falsity of other beliefs in their 
worldview.  Deductive inferences can help an individual to reveal any inconsistencies or contradictions in their 
worldviews by revealing--making explicit--that some of that individual’s beliefs either imply a contradiction or directly 
contradict other beliefs also held by that individual.  In short, these individually inconsistent beliefs together result in a 
statement that is necessarily false—a contradiction.  Likewise, deduction facilitates the formation of a systematic belief 
system or worldview by providing a means of assessing whether a belief or a collection of beliefs in the system 
guarantees the truth of another belief or collection of beliefs.  In other words, deduction can help to illuminate the gaps 
in one’s belief system as well as reveal the logical difficulties within one’s belief systems and worldview.   

5.4.b Inductive Inferences 
Deductive inferences trade inferential power for truth preservation.  The other major class (kind) of inferences--
inductive inferences--trade little bit of the inference’s guarantee of truth for increases in power, speed, and/or 
tractability.  Inductive inferences seek to stretch the information available to the reasoner to cover new and possibly 
different situations.  Thus, inductive inference is ampliative.  That is, inductive inference attempts to add information to 
the reasoner’s stock of truths.   All inductive inferences, as a result, transform one’s initial information in accordance 
with one or more implicit assumptions about the structure of the world or about a regularity in the way the world 
changes.  The implicit assumptions driving ampliative inferences take the form of the inference strategies or rules 
themselves--they are generally the actual mechanisms of information transformation.  For instance, inductive inferences 
suppose (at least) that new situations will resemble old situations in some respect and to some degree.    An inductive 
generalization nicely illustrates this feature:  Suppose that you notice that on those occasions when it rains you lose your 
internet connection.  You might generalize your experience to the future by concluding that all times when it rains will 
be times you lose your internet connection.  Your inference implicitly assumes that the correlation you have observed in 
the past between rain and lost connections will continue in the future.  
 
So, inductive inferences extend one’s stock of truths by implicitly assuming one or more structural or dynamic 
regularities.  As a result of these implicit assumptions, inductive inference strategies introduce a degree of risk into one’s 
inferences.  Specifically, the implicit presupposition driving some inference strategy may prove false in a given inferential 

situation, thereby generating a false belief.  Returning 
to the internet example, your internet provider might 
have a specific problem that it identifies and fixes 
before the next rain.  In such a case, the inductive 
inference that your internet service will fail with the 
next rain generates a false belief.  The imperfect 
relationship between the truth of one’s initial 
information and the truth of the resulting inferentially 
generated information means that inductive 
inferences trade truth for inferential power.  The truth 
of one’s initial information does not guarantee the 
truth of the conclusion, but good inductive inferences 
generate highly probable information from true the 
initial information.  In other words, even a very good 

inductive inference can result in a conclusion that proves false.  The virtue of inductive inference, then, does not lie in 
the perfect preservation of truth from initial information to the conclusion.  Very good inductive inferences transform 
true information to generate one’s conclusion in such a way that the conclusion’s being false proves very unlikely.  In 
other words, the conclusion of a good inductive inference proves very likely true. 
 

 

Diagram depicting inductive and deductive inferences in terms of their respective 
relationships between explicit and available initial information and the information 
generated by the inferential transformation.  Click on image to see animation. 







5.5 Innate Inductive Abilities, Inabilities & Biases: Inductive Inferences 
Indeed, the fact that an individual hunter-gatherer’s experiences typify their environment proves crucial for 
understanding general heuristics.  For example, the representativeness heuristic acts so that a person judges an object, 
property, event, or relation more or less probable based upon how typical the object, property, event, or relation is in 
their own experiences.  Specifically, the representativeness heuristic estimates the probability of the object, property, 
event, or relation based upon how typical the object, property, event, or relation appears to be given their concepts and 
schemas—the executive summaries of their experiences.  In other words, the representativeness heuristic judges the 
likelihood of an event in the real world by judging the extent to which that event typifies the essential or salient features 
of one’s own models and concepts.   

Two psychologists who have studied human inductive 
inference abilities, Amos Tversky and Daniel 
Kahneman, characterize representativeness as 
follows:85 “Representativeness is an assessment of the 
degree of correspondence between a sample and a 
population, an instance and a category, an act and an 
actor or, more generally, between and outcome and a 
model.”  (p. 22)   In other words, the 
representativeness relation holds between a 
population and some bit of knowledge had by the 
reasoner—a sample of the population.  This 
relationship between the real world population and a 
sample—a small subset of instances taken from the 
population--provides the key to understanding most 

ampliative inferences.   Ampliative inferences move from partial information about objects, properties, events, or 
relations in some population—a sample--to information making claims about those objects, properties, events, or 
relations in the entire population—a generalized conclusion. The sample, the partial information, serves as the data or 
evidence taken from the population, and the ampliative inference extrapolates from that sample—that data or 
evidence--to make explicit claims about the entire population or novel members of that population.  Thus, for Tversky 
and Kahneman representativeness provides the basis for statistical inference in that it uses the incidence of objects, 
properties, events, and/or relations within a sample (subset of the population) to infer the incidence of  those objects, 
properties, events, and/or relations within a population.  

 Later lectures illustrate the role of this inference 
strategy in statistics.   Statistical inference proves 
reliable because it operates by collecting and 
analyzing samples in accordance with a set of 
methods and rules that intelligent and insightful 
individuals have been developing for less than 150 
years.  These rules and methods act so that the 
dimensions and degrees of representativeness 
between the sample and the population remain 
relatively constant and high.  That is, the sample 
consistently corresponds to the population with 
regard to some target object, property, event, or 
relation with relatively small variations.  In short, the 
value in the sample provides an excellent basis for 

 

Diagram depicting (1) the relationship between a sample and a population, (2) the 
relationship between a representative sample and a population, and (3) the 
relationship between an unrepresentative sample and a population.  Click diagram to 
see animation. 

 

Schematic drawing depicting statistical inference and its underlying assumptions.  The 
inference takes information about the sample and infers a similar range of values in the 
population based upon well-known representativeness relationships between randomly 
selected samples of certain sizes and the population.  Click on diagram to display 
animated version. 











estimating the value in the population.  The history of statistics has largely been a history of refining and expanding upon 
this basic inference strategy to make increasingly powerful and varied inferences. 

5.5.a Example of Inductive Bias: The Representativeness Heuristic 
The representativeness heuristic, in contrast, uses one’s own concepts and schemas as samples of the population.  The 
representativeness heuristic works to infer that the probability of an object, property, event, or relation in the world 
corresponds to how typical the object, property, event, or relation seems in one’s own experiences.  Specifically, the 
representativeness heuristic estimates real-world probability based upon how typical the object, property, event, or 
relation appears to be given one’s concepts and schemas—the executive summaries of one’s experiences.  In other 
words, the representativeness heuristic judges the likelihood of an object, property, event, or relation in the real world 
by judging the extent to which the object, property, event, or relation typifies the essential or salient features of one’s 
own models and concepts.  Thus, the representativeness heuristic embodies a contextualized inference strategy in that 
(1) the content and context (e.x. the presentation of the problem) partially determine the concepts one takes as 
samples, and (2) the samples one employs—one’s own concepts and schemas—can prove idiosyncratic.  For example, 
suppose that I ask you to estimate the respective probabilities that the fruit in my lunch is an apple, a watermelon, or an 
olive.  You will likely base the estimates you give me for the probabilities of each kind of fruit based upon typicality, .i.e., 
how typical each kind of fruit--apple, watermelon, and olive—is of a fruit given your fruit concept, i.e., how 
representative it is of your fruit concept.  Since people in North America tend to find apples very typical examples of 
fruits given their fruit concept, you will likely rate an apple as most likely.  Since olives no not have high typicality ratings, 
you will likely rate olives as the least probable fruit in my lunch. 

So, the representativeness heuristic, as an instance of inductive inference, relies upon the truth of its presuppositions in 
order to extend one’s knowledge beyond one’s experiences.  As a result, the representativeness heuristic generates 
good probability estimates for objects, properties, events, and/or relations in the real world whenever those 
presuppositions apply.  Conversely, the representativeness heuristic systematically generates poor estimates whenever  

its presuppositions fail to apply.  Specifically, 
when one deals with a relatively small, stable, and 
homogenous population one’s experiences (concepts 
and schemas) are much more likely to provide a 
representative sample, and generate good estimates.  
When one deals with larger, dynamic, and 
heterogeneous populations one’s experiences 
(concepts and schemas) tend to provide a much less 
representative sample, and often generate bad 
estimates.  For example, people expect chance events 
to look random.  When asked to rate the relative 
likelihood of the following two sequences of rolls of a 
fair die, people tend to rate the later sequence as far 
less likely: 1,3,5,2 or 3,3,3,3.  In fact, probability 
theory dictates that the two sequences are 
equiprobable (1/1296).   Similarly, when asked to rate 
the relative likelihood of dying in a terrorist attack 

compared to the likelihood of dying from accidental suffocation, people tend to rate terrorism more likely.  However, 
according to the U.S. State Department 56 U.S. citizens died world-wide from terrorism in 2005,86 while on average 
about 6,000 U.S. citizens die of accidental suffocation each year.87 

 

Schematic drawing depicting the representativeness heuristic inference and its 
underlying assumptions.  The heuristic determines the probability of a property, object, 
event, or relation in the sample—in this case a concept or schema representation—it 
then infers a similar range of values in the population.  The bases (underlying implicit 
assumptions) behind the representativeness heuristic are:  (1) The assumption that the 
concept or schema is representative of the population. (2) The assumption of the 
representativeness of the concept or schema with respect to the target parameter in 
the population such that the value for the target parameter as given by the concept or 
schema is representative of the value for the target parameter in the population.  Click 
on diagram to display video. 







5.6 Innate Deductive Abilities, Inabilities & Biases: Deductive Inferences 
When one turns to an examination of human innate deductive abilities, one finds two general trends.  First, humans 
have a very limited ability to process large amounts of data or to processes complex, highly inter-related data when 
making inferences involving working memory.  Thus, humans tend to perform poorly when formulating or evaluating 
complicated or long deductive inferences.   Second, the content of individual arguments and the context of individual 
inferences (presentation, circumstance, etc.) drive human formulations of deductive inferences as well as human 
evaluations of deductive inferences. 

5.6.a The Resources Difficulty of Deductive Reasoning 
Deductive inferences seem more dependent upon language and hence more closely tied to working memory and 
working memory limitations.  As a result, normal human formulations of deductive arguments and evaluation of 
deductive arguments quickly run into the very real capacity limitations of working memory.  For example, consider an 
argument taken from Charles Lutwidge Dodgson, better known as Lewis Carroll (1832-1898):88 

No interesting poems are unpopular among people of real taste. 
No modern poetry is free from affectation. 
All your poems are on the subject of soap-bubbles. 
No affected poetry is popular among people of real taste. 
No ancient poem is on the subject of soap-bubbles. 
-------------------------------------------------------------------------------------------------------- 
Therefore, your poetry is not interesting. (p.118) 

Is the above argument a good deductive argument?  Most people have almost no idea.  It seems like rambling, rather 
unconnected sentences.  However, careful analysis reveals the argument’s validity.  Put simply, the argument proves too 
complex for intuitive evaluation.  The ability of humans to effectively reason, particularly reasoning employing working 
memory, varies inversely with the amount and complexity of information involved in the inference.  For example, 
clinicians, (doctors, psychologists) perform no better—often worse--on a wide range of clinical judgment tasks when 
given access to more information (though their subjective confidence in their judgments increases).89-97  In short, 
information--even when highly predictive--only proves useful to the extent that the reasoner can exploit the information 
for the purposes of the inference.  Utilizing large amounts of complex information has benefits, but the human ability to 
utilize such information proves quite finite.  As a result, deductive inferences become too complex and involve too much 
information for native human reasoning abilities rather quickly.   

5.6.b Context and Content Effects in Deductive Reasoning 
So, the amount of information as well as the complexity of information can quickly and adversely impact intuitive 
evaluations and formulations of deductive inferences.  Information also enters into deductive inference abilities more 
directly through the salience of content when formulating and evaluating arguments.  Indeed, researchers have 
demonstrated a strong dependence upon content and context in the formulation and in the evaluation of deductive 
inferences by human subjects.  As a result, researchers can present a clear and detailed hierarchy of difficulty of 
argument types for human formulation and intuitive evaluation.  Consider the following table of arguments: 
 

1 
All elephants are big things. 
All elephants are mammals. 
---------------------------------------------------  
Some mammals are big things. 

2 
No C are B 
All A are B 
---------------------- 
No A are C 

3 
No trersnks are yrdogs. 
All batgobs are trersnks. 
--------------------------------- 
All batgobs are yrdogs. 

4 
No U.S. presidents are women. 
All women are people who can reproduce. 
----------------------------------------------------------- 
No people who can reproduce are U.S. presidents. 

http://en.wikipedia.org/wiki/Lewis_Carroll


 
Of the four arguments, logicians would designate as invalid or deductively bad only the 3rd argument (bottom, left).  
Logicians would designate the other three arguments as valid or deductively good arguments.  People tend to find that 
the difficulty in correctly evaluating these arguments increases as they move from box 1 to box 4.  In general, 
researchers report that people have the least difficulty in evaluating deductive arguments when those arguments 
involve content with which the person has familiarity.   Similarly, people perform better when argument content mirrors 
the underlying logical structure of the argument (i.e., true premises, true conclusion—valid; false premises, false 
conclusion—invalid).   People tend to find arguments lacking content, like the abstractly symbolized argument in the 
second box, more difficult.  In fact, performance on argument evaluation tasks drops significantly.98-100  Arguments 
employing pseudo-content (meaningless word-like content) prove even more difficult for most people to intuitively 
evaluate.  Finally, arguments in which the content seems inconsistent with one’s beliefs or in which the argument’s 

content fails to mirror the underlying argument 
structure prove the most troublesome for people 
(i.e., false premises, false conclusion—valid; true 
premises, true conclusion—invalid).  For instance, the 
example in the fourth box, though perfectly valid, 
seems like a bad argument to many people because 
both the premises and the conclusion are false.  
Judging the argument in the fourth box invalid 
illustrates a systematic bias in innate human 
deductive reasoning resulting from the tendency to 
contextualize (i.e., rely heavily on content and 
context) reasoning.  Specifically, people tend to judge 
as good (valid) arguments with believable or believed 
conclusions; people tend to judge as bad (invalid) 
arguments with unbelievable or disbelieved 
conclusions.  Researchers call this tendency “Belief 
Bias”.101-105  Belief bias arises because conclusion 
believability can prove logically irrelevant, but 

psychologically relevant to humans.  The graphic below illustrates the relationships between an argument’s content and 
the difficulty it presents to typical humans when they try to formulate or evaluate the argument.  Importantly, both the 
familiarity of the content, the type of content, and the relationship between content and underlying logical structure 
affect human performance on deductive reasoning tasks. 

5.7 Context Dependent Inference Strategies 
The last two sections discuss general heuristics and general tendencies of deductive inference.  This section turns to the 
second tier of processes in System 1—context dependent strategies.  One must carefully distinguish contextualization, a 
general feature of System 1 inference strategies, with context-dependent inference strategies.  Context-dependent 
inference strategies form a class of inference strategies people use only in very specific contexts, and which they do not 
employ outside of those contexts.  Belief contexts influence deductive inferences because the inference processes are 
influenced by the content of beliefs.   Context can also affect deductive reasoning when the context triggers a context-
specific inference strategy.  Such strategies do not operate as general strategies.  Rather, they operate in relatively 
specific contexts. 

5.7.a Example: Conditional inferences 
One of the more striking examples of a context-dependent inference strategy involves the innate human ability to 
reason using conditional statements.  Conditional statements function to relate the truth of two component statements.  

 
Diagram indicating the relative difficulty of making or evaluating deductive inferences 
with various kinds of content.  The easiest types of inferences to make or evaluate 
involve familiar content (i.e., are about, familiar objects, properties, events, or relations) 
where the premises and conclusion are true (valid) or false (invalid).  Replacing familiar 
with abstract content (i.e., like symbols) makes inferences and their evaluation more 
difficult.  Replacing familiar content with nonsense words (i.e., pseudo-content that the 
brain tries to use) increases the difficulty.  Finally, replacing familiar content where the 
premises and conclusion are true (valid) or false (invalid) with familiar content where 
the truth-values of the premises and conclusion vary from all true or all false makes 
inferences the hardest to correctly perform or evaluate.  Click on diagram to view 
animation. 

https://en.wikipedia.org/wiki/Belief_bias
https://en.wikipedia.org/wiki/Belief_bias






Specifically, the conditional relates the truth of the antecedent, the condition, to the truth of the consequent.  For 
instance, the conditional sentence, “If you read this chapter, then you can better understand the lecture,” claims that 
the truth of the antecedent--you read this chapter--insures the truth of the consequent--you can better understand the 
lecture.  Conditional statements, despite their ubiquity and utility in general reasoning, prove difficult for humans to  

process.  Consider the following problems first 
investigated by Peter Cathcart Wason, and 
subsequently entitled the Wason Selection Task.106-109 

People tend to have better, more robust performance 
on reasoning tasks involving conditionals within 
deontic (permission and obligation) tasks, like the first 
example given in the video (left) and depicted in the 
cover image.  This difference in typical human 
performance seems to emerge early in development 
and persist into adulthood.  Indeed, this pattern of 
relative ease in conditional reasoning and evaluation 
tasks within deontic contexts has led researchers to 
suppose that performance in these contexts is either 
part of an innate context-specific mechanism for 
reasoning, or that humans possess an innate 
disposition to learn such rules in deontic contexts.107, 

110-113  In the second example the video presents a  
selection task using a standard non-deontic and relatively unfamiliar conditional. Researchers find that in non-deontic 
selection tasks like the second example given in the video, people demonstrate a significant inability to reason with or to 
evaluate conditional statements or related arguments.  Moreover, difficulties that arise in these non-deontic cases 
appear in ordinary situations in which people perform or evaluate simple conditional inferences.  In fact, people’s 
conditional reasoning in non-deontic cases exhibits the same sorts of general content effects described earlier in 
reference to general deductive inference abilities.107, 110-113 

The video (left) illustrates the relationships between a 
conditional argument’s content and the difficulty it 
presents to typical humans when the try to formulate 
or evaluate inferences involving that conditional.   The 
easiest types of inferences involve deontic contexts in 
which the conditionals and/or inferences concern 
cases of permission, duty, obligation, etc..  Outside of 
deontic contexts performance drops significantly 
following the pattern for other deductive inferences 
and evaluations.  Outside deontic contexts the easiest 
types of conditional inferences and conditional 
evaluations involve familiar content (i.e., conditionals 
about, familiar objects, properties, events, or 

relations) where the premises and conclusion are true (valid) or false (invalid).  Replacing familiar with abstract content 
(i.e., like symbols) makes conditional inferences and conditional evaluation more difficult.  Replacing familiar content 
with nonsense words (i.e., pseudo-content that the brain tries to use) increases the difficulty.  Finally, replacing familiar 
content where the premises and conclusion are true (valid) or false (invalid) with familiar content where the truth-values 

 

Two examples of a conditional reasoning task Wason explores in adults and that 
Cummins, Chao, and Cheng110-112 in explore in development.  The first example employs 
a deontic selection task involving a permission rule.  The second task employs a 
standard, non-deontic conditional of the type explored by Wason.  Wason’s and 
subsequent studies support the hypothesis that people have difficulty making and 
evaluating conditional inferences in non-deontic cases as evinced by the strong 
tendency to incorrectly evaluate the truth of conditionals in non-deontic cases. In the 
second example, one ought to list A and D as cards that need to be checked.  In 
contrast, people tend to have better, more robust performance on reasoning tasks 
involving conditionals within deontic (permission and obligation) tasks. 

 

Diagram indicating the relative difficulty of making or evaluating the truth or falsity of 
conditionals and/or performing conditional inferences with various kinds of contexts.  
Click diagram to play animation. 

http://en.wikipedia.org/wiki/Peter_Cathcart_Wason
http://en.wikipedia.org/wiki/Wason_selection_task










of the premises and conclusion vary from all true or all false makes inferences the hardest to correct perform or 
evaluate. 

5.7.b Example: Probability Assignments 
A now famous problem originally formulated by Steve Selvin and often called the Monty Hall Problem provides yet 
another example of content-dependent inferences.114-117  Consider the three boxes in the video and cover diagram 
below.  Suppose that you and I will play a game many times.  The goal of that game is to win as much money as possible  

from me.  Here’s how the game works.  While you 
wait outside the room, I randomly choose one of the 
three boxes and put a five dollar bill inside the box.  
When you return, I ask you pick one of the three 
boxes.  Suppose that I put the money in box number 
two and you pick box number two.  I randomly choose 
one of the other two empty boxes, say number 3, and 
show you the contents, i.e., that it is empty.  I discard 
box three, so now there are two boxes left.  I push 
these two boxes forward and ask you if you would like 
to stick with your original box or switch to the other 
remaining box.  Now, suppose that I put the money in 
box number two, but you choose box number one.  I 
show you the contents (empty) of box number three 
and set it aside, leaving two boxes.  I push these two 
boxes forward and ask you if you would like to stick 
with your original box or switch to the other 
remaining box.  Your job is to decide which of the 
following three strategies will result in your winning 
the most money over the long-run:  (1) Switch from 
your box to the other remaining box, (2) Stay with 
your original box, (3) It does not matter to your long 

term winnings whether you switch, so you can switch or not as it suits you.   

In general, people will estimate the probability of a random event by considering the number of current possibilities.  
Since people perceive two boxes in the context of the choice to switch or stick with a box, they estimate the probability 
as one out of two or 50-50; two boxes, so two chances and one five dollar bill, so one possible winner.  However, the 
choice remains governed by the probability of the original choice, one out of three.  The mechanics of the game merely 
disguise the fact that you choose between the contents of your one, original box and the contents of the other two 
boxes.  How do I disguise this choice?  I go through the show of revealing an empty box from the two boxes before 
asking you to choose.  This bit of stagecraft allows you to discount that box in your calculations, despite the fact that you 
will always receive the contents of the two boxes you did not choose if you switch.  People have a difficult time 
wrapping their head around this problem, so make sure you attend lecture to get Wallis’ extra explanation. 

5.8 Chapter Summary 
This chapter characterizes inferences and discusses the various types of innate human inference strategies standardly 
divided by cognitive scientists into two general strategy categories—System 1 and System 2. The discussion emphasizes 
that these strategies evolved like the human brain itself during the hunter-gatherer phase of Hominini evolution.  As 
such evolution has optimized these strategies for an environment that is relatively small, stable, and homogenous.  In 
such an environment, an individual human’s experiences are pretty accurate samplings of the environment overall.   

 

Diagram depicting the set-up and choices in the Monty Hall problem.  Consider the 
three boxes in the diagram below.  Suppose that you and I will play a game many times.  
The goal of that game is to win as much money as possible from me.  Here’s how the 
game works.  While you wait outside the room, I randomly choose one of the three 
boxes and put a five dollar bill inside the box.  When you return, I ask you pick one of 
the three boxes.  In case 1 you pick number two and I put the money in number two.  I 
randomly choose one of the other two empty boxes, 3, and show you the contents, i.e., 
that it is empty, and discard it.  Now there are two boxes left.  I push these two boxes 
forward and ask you if you would like to stick with your original box or switch to the 
other remaining box.  In case 2 you choose number one, but I put the money in box 
number two.  I show you the contents (empty) of box number three and set it aside.  
Now there are two boxes left.  I push these two boxes forward and ask you if you would 
like to stick with your original box or switch to the other remaining box.  Your job is to 
decide which of the following three strategies will result in your winning the most 
money over the long-run:  (1) Switch from your box to the other remaining box, (2) Stay 
with your original box, (3) It doesn’t matter whether you switch, so you can switch or 
not as it suits you.  People are often very surprised to discover that one should always 
switch boxes to maximize willing in the long run.  Click on diagram to play animation. 

https://en.wikipedia.org/wiki/Steve_Selvin
http://en.wikipedia.org/wiki/Monty_hall_problem






Similarly, hunter-gather problem-solving was likely limited largely to reactive, relatively simple, and concrete problem-
solving linked to specific contents (problems) and contexts (situations). 

The combination of automaticity, limited conscious access, and contextualization in System 1 inference strategies 
represents an approach to inferences that typically results in relatively fast, concrete, resource sparing inferences best 
suited to reactive responses to environmental circumstances.  Indeed, automatic inferences increase reaction time in 
that they respond without lengthy consciously mediated recognition or evaluation processes.   Likewise, automaticity 
and limited conscious access minimize the need to employ the very limited resources of conscious attention in problem-
solving.  Finally, contextualization represents a strategy for quick and highly fluid problem-solving driven by one’s 
current situation.  Add to this a strong genetically determined disposition towards the development of such inference 
strategies, and the need for a long, resource intensive learning period disappears as well.  

However, the advantages conferred by the system 1 problem-solving strategy depend upon (implicitly presume) a 
particular sort of environment that presents a particular sort of problem.  When one employs automatic, contextualized 
inference strategies to which one has with little conscious access in environments or on problems that violate the 
presuppositions of the strategy, systematic errors will occur and these errors will often prove difficult to identify and 
correct.  If these inference strategies also prove largely innate, then the reasoner will have very limited ability to alter 
this basic architecture.  In his famous 1990 book, Who is Rational?, Keith Stanovich tells readers that,83 

Because this tendency toward the contextualization of information processing by System 1 is so pervasive, it is 
termed here the fundamental computational bias in human cognition.  The fundamental computational bias is 
meant to be a global term that captures the pervasive bias toward the contextualization of all informational 
encounters.  It conjoins the following processing tendencies: (a) the tendency to adhere to Gricean 
conversational principles even in situations that lack many conversational features (Adler, 1984; Hilton, 1995), 
(b) the tendency to contextualize a problem with as much prior knowledge as is easily accessible, even when the 
problem is formal and the only solution is a content-free rule (Evans, 1982, 1989; Evans et al., 1983), (c) the 
tendency to see design and pattern in situations that are either undesigned, unpatterned, or random (Levinson, 
1995), (d) the tendency to reason enthymematically--to make assumptions not stated in a problem and then 
reason from those assumptions (Henle, 1962; Rescher, 1988), and (e) the tendency toward a narrative mode of 
thought (Bruner, 1986, 1990). 

All of these properties conjoined together represent a cognitive tendency toward radical contextualization. The 
bias is termed fundamental because it is thought to stem largely from System 1 and that system is assumed to 
be primary in that it permeates virtually all of our thinking (e.g., Evans & Over, 1996).  If the properties of this 
system are not to be the dominant factors in our thinking, then they must be overridden by System 2 processes.  
(pp. 192-93) 

The material in this course illustrates the historical development of and real value of the body knowledge and 
techniques designed to compensate for the weaknesses and biases inherent in our innate inference strategies.  For 
the most part, this body of knowledge and techniques represent strongly decontextualized inference strategies and 
knowledge.  However, though this cultural heritage complements and compensates for weaknesses in native human 
abilities, it is not a panacea for poor reasoning.  The inability to utilize this body of knowledge and techniques in a 
consistent and pervasive fashion dramatically mitigates the potential of these techniques and knowledge.  
Nevertheless, one can easily observe the compounded positive (or negative) impact of individual human beliefs and 
decisions regarding diet, transportation, manufacturing and distributing goods and services, etc..  The consequences 
of individual beliefs and decisions manifest themselves in the current change occurring in the earth’s climate, the 
dramatically increasing incidence of obesity in the United States and all its related health problems, etc..   More 
importantly, competent, literate, and effective thinkers and decision makers benefit from; (1) better, more highly 
evinced, and integrated belief systems, (2) better, more informed decisions yielding more highly-valued outcomes, 
and (3) a greater awareness of the world and its multifarious opportunities and possibilities together with their 



associated benefits and pitfalls.  Likewise, societies—particularly industrialized democratic societies—rely upon 
informed, effective thinkers and decision makers to exist and function.  With both challenges and benefits in mind, 
the next lectures will turn to arguments, their structure, and techniques for extracting and evaluating them from 
written text and spoken passages. 

5.9 Key Terms 
Ampliative vs Non-ampliative inferences:  Ampliative inferences extend one’s conclusion beyond what one’s knowledge 
guarantees true.  Ampliative inferences thereby broaden or extend our knowledge.  However, in order go beyond known 
truths ampliative inferences must take on epistemic risk—risk that the conclusion can be false even when the premises 
are true.  Inductive inferences, for instance, are ampliative inferences.  Even when someone presents a strong inductive 
inference with true premises it remains possible that the conclusion, though highly likely to be true, is actually false.  
Non-ampliative inferences, in contrast, work to render otherwise implicit and unavailable information explicit and 
available.  Since non-ampliative inferences seek to enlarge the body of explicit and available true information given a 
reasoner’s current information, non-ampliative inferences act to optimize truth-preservation across the informational 
transformation.  Thus, non-ampliative inferences do not increase epistemic risk through their operation. 

Automatic Inference and Decision-Making Strategies: Automatic inference and decision making strategies engage in 
reaction to problems a reasoner encounters without the reasoner having to consciously evaluate the problem or choose 
the strategy.  For example, general heuristics like the representativeness heuristic operate automatically in reaction the 
situations in which one must estimate likelihoods. 

Autonomous Inference and Decision-Making Strategies: Autonomous inference and decision-making strategies operate 
without drawing significantly upon working memory resources.  As a result, autonomous inference strategies tend to 
operate largely outside of conscious awareness.  These inference processes also often sidestep the information capacity 
limitations of working memory and perform in a relatively uniform manner across different levels of fluid intelligence. 

Content-dependent Inference Strategies: Context-dependent inference strategies automatically guide inferences, but 
do so only in specific kinds of situations.   For instance, human conditional reasoning and the evaluation of conditional 
statements proves much better in deontic (below) situations.  Like general heuristics (below), context-dependent 
inference strategies exhibit (a) innateness, (b) automaticity (they work automatically without having to think about or 
choose them) (c) contextualization (i.e., System 1 inference strategies operate by bringing contextual and content-
relevant information to bear on the problem), as well as exhibiting limited conscious (d) awareness, (e) oversight, and (f) 
insight. 

Contextualized (Contextualization): A term used to describe how human reasoning and assessment of one’s own 
reasoning and the reasoning of others is strongly shaped by the content of one’s inferences or argument as well as the 
context of those inferences or arguments.  For example, people tend to judge arguments as better when they agree with 
the conclusion of the argument and worse when they disagree with the conclusion.  This particular content effect is 
called the belief bias. 

Deontic: Deontic is an adjective indicating that the noun is related somehow to permission, duty, obligation, or similar 
normative concepts.  For example, deontic contexts specify a set of contexts in which permission, duty, or obligation 
issues arise. “Should I run this stop light?” is a deontic question in that it concerns one’s actions in relation to norms.  As 
an aside, never run stoplights. 

Deductive inference: Deductive inferences work to preserve the truth of the initial information across the inferential 
transformation.  Thus, good deductive inferences (valid deductive inferences) operate such that if the initial information 
is true, the inferential transformation generates necessarily true information.  Deductive inferences, as a result, can only 
reveal what must be true given the truth of one’s initial information.   



General Heuristics: General heuristics consist of innate, automatic, inference strategies one utilizes in general problem 
solving (that’s the general part) and which involve the implicit presupposition of various facts about the problem or the 
world in order to generate solutions in a timely fashion given the information available (that’s the heuristic part).   

Inductive Inference: Inductive inference extends one’s stock of truths by implicitly or explicitly assuming the truth of 
one or more assumptions regarding the structure of the world or assumptions regarding one or more regularities in the 
way the world changes.  Inductive inferences, by making such assumptions, introduce a degree of risk into one’s 
inferences.  Specifically, the implicit presupposition may prove false, thereby generating a false belief.  Your internet 
provider might have a specific problem that it identifies and fixes before the next rain.  In such a case, the inductive 
inference that your internet service will fail with the next rain generates a false belief.  The imperfect relationship 
between the truth of one’s initial information and the truth of the resulting inferentially generated information means 
that inductive inferences trade truth for inferential power.  The truth of one’s initial information does not guarantee the 
truth of the conclusion, but good inductive inferences generate highly probable information from true the initial 
information. 

Inference: Inferences are psychological processes that take the explicit information available to those processes and 
transform that initial information into new explicit information that is now available for some other process, to store in 
memory, or for guiding action.  For example, when one uses the manufacturer’s instructions to assemble some 
furniture, one takes explicit information about the steps involved in assembly gathered through vision to infer 
sequences of motor actions that will bring out the complete, assembled piece of furniture…er, hopefully.  

Inferential Power: Inferential power refers to the property of an inference strategy to generate information that goes 
beyond the explicit and implicit information guaranteed to be true given a reasoner’s initial information.  Thus, powerful 
inference strategies are also ampliative inference strategies that broaden or extend a reasoner’s knowledge beyond 
what was guaranteed to be true before the inference.  As a result, powerful inferential strategies must take on a degree 
of epistemic risk—risk that the conclusion can be false even when the making an inference from true initial information.  
For example, when you infer that you can make it to school before your class starts you cannot guarantee that you will 
not get into an accident, develop car trouble, or run into unusually heavy traffic.  

Population: Statisticians refer to the larger real world collection of individuals from which one takes a sample as the 
population or as the target population.  For instance, the U.S. Census took a sample from the target population of 
humans living in the U.S.. 

The Representativeness Heuristic: The representativeness heuristic infers that the probability of an object, property, 
event, or relation in the world corresponds to how typical the object, property, event, or relation seems in one’s own 
experiences.  Specifically, the representativeness heuristic estimates real-world probability based upon how typical the 
object, property, event, or relation appears to be given one’s concepts and schemas—the executive summaries of one’s 
experiences.  In other words, the representativeness heuristic judges the likelihood of an object, property, event, or 
relation in the real world by judging the extent to which it typifies the essential or salient features of one’s own models 
and concepts.  For example, people often judge a series of rolls of a die that yields 3,3,3 less probable than a series that 
yields 4,2,6 because the latter seems more representative of a series that would result from a random processes like 
rolling dice.  

Sample: In statistics researchers refer to a sample as a comparatively small group of individuals or objects from a larger, 
real-world population (target population).  The researchers collect information from the sample in order to make 
statistical inferences about the individuals in the real-world target population.  For example, news organizations 
regularly interview a sample of “likely voters” from the U.S. population.  Based upon the information from these likely 



voters regarding likely choice in an election, news organizations make inferences about who voters in the U.S. 
population overall are likely to choose in an election.   

System 1:  System 1 consists of both general heuristics and context-dependent inference strategies.  This collection of 
inference and decision-making processes sharing a common problem-solving strategy evolved so that humans develop 
native dispositions that automatically engage when encountering inference and decision problems.  The strategy tends 
to contextualize these problems by relying upon information about the specific context and content of the current 
problem.  System 1 inference processes function relatively independently of working memory and therefore require 
little conscious awareness and oversight to operate.  As a result, these strategies allow for very little conscious access 
into their functioning and very little conscious oversight of their operations.  However, these processes also prove less 
susceptible to the limitations on the amount and complexity of information inherent in working memory and perform 
relatively uniformly across individual variations in fluid intelligence. These processes also often operate through implicit 
associations and in a relatively fast manner. 

System 2: System 2 inference and decision-making strategies, in contrast, to System 1 consist primarily of learned 
knowledge and techniques.  Strategies in System 2 do not automatically engage when a reasoner faces a problem.  
Indeed, they often prove difficult to engage.  System 2 strategies require conscious awareness and oversight to operate 
and tax working memory resources significantly.    However, they tend to compensate for the sorts of weaknesses 
inherent in System 1 strategies and prove more generally reliable because they tend embody more decontextualized 
solution strategies—strategies explicitly driven by the underlying structural features of problems.   System 2 inference 
strategies also provide humans with greater conscious insight and oversight into their inference and decision-making 
processes. 

Tractability: Tractability refers to the property of an inference strategy to complete the inference in a reasonable 
amount of time (or even at all) utilizing only the available cognitive resources.  For instance, inferring the product of two 
eight digit numbers within seconds using only working memory proves to be an intractable strategy for most people.  
However, using the Hindu-Arabic positional method to compute the produce using pen and paper proves tractable.  
Likewise, using a calculator also proves tractable. 

Working Memory: Contemporary theories of working memory characterize working memory as a brain system that 
functions to hold and manipulate information during conscious problem solving and decision making.  Working memory 
can incorporate information from different modalities.  Two important properties of working memory are: (1) The 
contents of working memory are consciously available. (2) Working memory capacity is extremely small both in terms of 
the amount of information and in terms of the complexity of information. 
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