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The Scientific Method in Political Science 
 
 Political scientists are interested in a wide variety of different topics.  Some 
political scientists study the causes and consequences of war.   Other political 
scientists study why voters support a particular candidate and what difference it 
makes which candidate or party is victorious.   For political scientists studying these 
and a vast array of other topics, quantitative application of the scientific method 
offers one of the most useful approaches to increasing knowledge.  While the 
scientific method is not useful in answering questions posed by normative political 
philosophers (e.g., What is justice?), it is extremely valuable in understanding how 
and why political phenomena occur.  As a first step in this process, we need to 
understand what the scientific method is.  Let me suggest that science is defined by 
its methodology, not its subject matter.  Thus, it is how one studies something, not 
what is studied, that determines whether or not the researcher is using the scientific 
method.  Throughout this course I will use the following definition of science: a 
communicable (can communicate to those who do not "know"), falsifiable 
(possibility of non-confirmation), and logical (conclusions follow from the facts) 
method of pursuing knowledge involving the recognition and formulation of a 
problem, the collection of data through observation and experiment, and the 
formulation and testing of hypotheses.  That is a long and involved definition! 
 In order to fully understand the above definition of science, it is useful to break 
it into parts.  As stated in the definition, "communicable" means that your study can 
be understood by those who are not already part of it.  Thus, you need to be able to 
explain your method to other researchers so that they can both check your work for 
accuracy and apply it to new circumstances.  For example, if you were testing a new 
vaccine, future researchers might wish to replicate (repeat) your work on the same 
type of subjects and then administer it to a different group.  Therefore, other 
researchers would have to know both the composition of your vaccine and how the 
tests of it were conducted.   
 The second portion of the above definition of science concerns "falsifiability." 
Falsifiability means that there must be some outcome which would countermand 
what we expect to happen.  For example, suppose you said that if God wants you to 
go to Pittsburgh he will provide you with the plane tickets.  In terms of falsifiability, 
this would not be a scientific test of the existence of God.  Regardless of whether 
you received the tickets or not, you would not doubt the existence of God.  No 
possible outcome would lead to a rejection of the premise that God exists. 
 The next portion of the definition of science concerns logic.  As stated above, 
your conclusions must follow from the facts.  You cannot conclude that the 
Democratic party favors a greater tax burden on the wealthy than the Republican 
party when the facts suggest otherwise.    
 The next sections of the definition of science are rather straightforward.  
Certainly, you must formulate a problem or else there is nothing to study.  
Furthermore, you collect data which bear on the problem (or topic) you are studying. 
For example, you collect data on the differences between the tax proposals offered 
by the Democratic and Republican parties.    
  



 The final portion of the definition of science concerns the formulation and 
testing of hypotheses.  Let me define a hypothesis as follows: a relational statement 
between two, or more, concepts which is deductively plausible and empirically 
generalizable.  I think it would be useful to begin by defining a concept.  A concept is 
an abstraction representing an object, a property of an object, or a certain 
phenomena.  For example, "poverty" could be a concept. Should we conceptualize 
"poverty" in "relative" or "absolute" terms?   A person with an income of $20,000 
could be thought of as impoverished relative to someone who had an income of 
$500,000.  On the other hand one could argue (as conservatives generally do) that 
poverty is absolute.  Thus, the determination of poverty would not concern how 
much income you had relative to someone else, but rather whether you could attain a 
particular standard of living (e.g., avoid hunger).  My point is that a researcher 
measuring poverty has to use one of these conceptualizations.  Obviously, it matters 
which one they choose.  One of the great advantages of the scientific method is that 
the researcher must state and defend their choice.  By so doing, other researchers 
can then use the same, or different conceptualizations, and see to what extent the 
results are affected by the conceptualization employed.   
 A concept that can assume different values is called a variable.  For example, 
since all governments do not have the same degree of liberalism, governmental 
liberalism is a variable.  Two particular types of variables are fundamental to the 
scientific method (particularly hypothesis testing).   The presumed "causal" factor is 
referred to as the "independent" (or "predictor") variable and the effect is referred to 
as the "dependent" variable.   Suppose we hypothesize that the degree of 
governmental liberalism alters the percentage of income going to the poor.  Since 
governmental liberalism is presumed to effect the percentage of income going to the 
poor, governmental liberalism is the independent variable and the percentage of 
income going to the poor is the dependent variable.  Alternatively, you might think of 
it this way: the score on the dependent variable depends upon the score on the 
independent variable (not the other way around).  
 An operationalization is the measurement of a concept.  For example, how do 
you quantify whatever conceptualization of "income" you are using?  If you receive 
medical benefits from the government does this count as "income"?   Should the use 
of a company car count as "income"?  The researcher must explain how they 
measure "income" and defend why their measure is appropriate. 
 A relational statement is a causal or associational link between concepts.  For 
example, suppose we hypothesize that the liberalism of the federal government is 
"positively" associated with the percentage of income going to the poor.  The 
previous statement is relational because it depicts an association between the 
concepts (liberalism of the federal government and the percentage of income going 
to the poor).   Notice the use of the directional term "positive."  A "positive" 
relationship means that higher scores on one variable are associated with higher 
scores on the other variable.  For example, if the liberalism of the federal government 
and the percentage of income going to the poor are "positively" related (i.e., 
associated) it would mean that if the score on federal government liberalism were to 
increase from say 50% to 75% (e.g., by electing many more Democratic congressmen 
and senators) the percentage of the national income going to the poor might then 



increase from 10% to 12%.    
 Relationships between variables can also be "negative."  A "negative" 
relationship means that higher scores on one variable are associated with lower 
scores on the other variable.  For example, if the liberalism of the federal government 
and the percentage of income going to the poor are "negatively" related it would 
mean that if the score on federal government liberalism were to increase from 50% to 
75% the percentage of the national income going to the poor might then decrease 
from 10% to 8%.      
 Deductive plausibility means that the researcher deduces (reasons from) 
something else which is plausible.  Thus, if we observe that Democrats tend to be 
more liberal than Republicans we may reasonably deduce from this that a particular 
Democratic candidate is likely to be more liberal than their Republican opponent 
(this is what we hypothesize and will be testing).   
 Empirically generalizable means that our findings are applicable to much of 
the observable (empirical) world.  We want to generalize as far as we can.  From 
Democrats and Republicans in California to Democrats and Republicans in the 
United States as a whole.  Any theory (a theory is just a more certain hypothesis) is 
more valuable the wider its applicability.  For example, isn't the anti-crime argument 
for the death penalty (that the death penalty will lower the murder rate) actually just 
an application of the basic economic theory that the more something costs (here 
"costs" would refer to the penalty) the less of it will be sold (each murder would be 
an occurrence, i.e., a "sale")?   
 Basically, the scientific process is just a continual testing of hypotheses in 
order to find their limits (i.e., how far they can be generalized) and then to modify the 
theory in light of the findings.  For example, in most western democracies the poor 
are more supportive of liberal governments than conservative governments.  Since it 
is logical to hypothesize that a government will pursue policies that 
disproportionately benefit its supporters, it would seem logical to hypothesize that 
the degree of liberalism of the government is positively associated with the 
percentage of income going to the poor.  Thus, higher scores on our measure of 
governmental liberalism should be associated with higher scores on our measure of 
the percentage of income going to the poor.  In testing this hypothesis we may find 
that government today has either a greater, or lesser, impact on the distribution of 
income than during the 1950s.   
 Another benefit of the scientific method is that the user must make their model 
explicit.  For example, it is possible that the liberalism of the government has little 
"direct" effect on the percentage of income going to the poor.  Since governments 
often control policy instruments (e.g., the money supply), as opposed to policy 
outcomes (e.g., the percentage of income going to the poor), it is likely that much of 
the effect of government on the percentage of income going to the poor would be 
"indirect" (i.e., through other factors).  For example, a more liberal government could 
increase the money supply.  A larger supply of money lowers interest rates which, in 
turn, make borrowing less expensive.  The reduced cost of borrowing money 
generally causes plants to expand which, in turn, lowers the unemployment rate.  As 
the unemployment rate decreases, the percentage of income going to the poor 
typically increases.   My point is that the user of the scientific method must explain 



which variables effect which other variables (i.e., they must make their "model" 
explicit).   
 Because users of the scientific method must make their models and measures 
explicit, other researchers can replicate (i.e., repeat) and expand on the original 
study.  Over the past two decades, political scientists have tested the governmental 
liberalism hypotheses I have been mentioning in most all major industrialized 
democracies in the world.  They have used an impressive group of alternative 
income measures, time periods, and models.  For example, in addition to studying 
the effect of governmental liberalism on the money supply, political scientists have 
also examined the effects of governmental liberalism on the amount and distribution 
of the tax burden over various income groups, numerous measures of social welfare 
spending and the amount of economic growth.     
 Users of the scientific method usually have two goals in mind. Typically, the 
first goal of a user of the scientific method is explanation.  In our example we are 
trying to explain why the percentage of income going to the poor varies (i.e., is not 
always the same - hence a "variable").  Our hypothesis is that variation in the 
liberalism of the government is what causes variation in the percentage of income 
going to the poor.  A large literature (to which political scientists have greatly 
contributed) has rather firmly established that governmental liberalism is positively 
associated with the percentage of income going to the poor.  However, while 
governmental liberalism is likely to positively influence the percentage of income 
going to the poor, other factors (i.e., independent variables) are also likely to 
influence the percentage of income going to the poor (e.g., international economic 
trends).  The result of incorporating these additional independent variables in the 
data analysis is a richer explanation of why the percentage of income going to the 
poor varies.   
 A second goal of users of the scientific method is prediction.  Applied to our 
hypothesis this would mean to predict how much the percentage of income going to 
the poor would increase, or decrease, depending upon a particular amount of 
change in the liberalism of the government.  Often these two goals are related.  As 
our ability to "explain" a process improves, our predictions are likely to become 
more accurate.  However, prediction is more difficult than explanation.  The impact of 
some of the independent variables may change in the future.  Consequently, 
accurate predictions are difficult.  Nevertheless, political scientists have formulated 
relatively accurate forecasts of the share of the vote American political parties will 
receive (the dependent variable) based upon changes in various economic and non-
economic variables (the independent variables).  However, typically the major goal of 
contemporary quantitative political science is explanation.   
 
 Research Design 
 
 Before continuing, make sure you understand that pages 2-5.  The topics dealt 
with over pages 2-5 are the foundation of every reading in this course.  The first quiz 
(coming the day this reading assignment is due) may well ask you to define a 
variable, abstract a hypothesis from written material, and/or to explain the difference 
between a "positive" and "negative" relationship.  You will need the information from 



the aforementioned lecture on the scientific method for quizzes 1-3 and the final 
examination.   
 The main purpose of pp. 6-14 is to discuss the early stages of a quantitative 
research project.  The first decision any researcher must make is what topic to study. 
  A political scientist should be able to defend their choice of a topic on normative 
grounds. Thus, why is the topic important?  For example, why should we study the 
causes of war?  I think one could make an excellent case that war is undesirable and, 
consequently, that determining why war starts is a logical pre-condition to 
minimizing its occurrence.  Although a normative defense of a topic is important, it is 
typically handled in several sentences.  The central contribution of quantitative 
research is to explain what takes place and why, not what is "good" or "bad."  
 In quantitative research (the topic of this course), we are usually testing a 
theory of behavior.  Whether it is the behavior of governments or individuals, we will 
probably be examining the causes (and/or consequences) of some form of political 
behavior. 
Any quantitative (i.e., empirical) study is trying to perform two fundamental tasks.  
First, we are trying to test and refute hypotheses.  For example, is the liberalism of a 
government positively associated with the amount of government support for the 
poor?  Second, we are trying to estimate the magnitude of the relationships between 
the variables (Hanushek and Jackson, Statistical Methods for Social Scientists, pp. 2-
3).  For example, the replacement of a Republican President with a Democratic 
President would result in how much more support for the poor? 
 After formulating the hypotheses (defined on pages 3-5), we need to begin 
thinking about how we will test them.  The strategy by which one tests their 
hypotheses is called a research design. 
While this may be a bit of an oversimplification, there are two basic types of research 
designs.  The first type of research design is called an experimental design.  With an 
experimental design, the researcher can adjust the level (i.e., amount/scores) on 
each of the independent variables.  For example, supposing a biologist formulates a 
new plant growth additive and wishes to test its effectiveness.  The amount of the 
plant growth additive each plant receives would be the independent variable.  The 
growth rate of the plant would be the dependent variable.  The biologist would 
probably think that factors other than the amount of the plant growth additive would 
alter the rate of plant growth.  Thus, the plant biologist would want additional 
independent variables.  For example, such factors as the type of plant, plant 
condition, water quality and the amount of sunlight could all affect the growth rate of 
a plant.   Each of these factors, in addition to the growth additive, is an independent 
variable.  The advantage of using an experimental research design is that the 
researcher can set the level of each of the independent variables.  For example, the 
plant biologist can determine what types of plants will be used, the amount of the 
growth additive each plant will receive and the amount of sunlight each plant is 
exposed to.  Being able to set the level (i.e., amount) of each of the independent 
variables is an extremely useful capability.  If all conditions (i.e., independent 
variables) other than the independent variable in which the plant biologist is most 
interested (the growth additive) are set at the same level (i.e., "controlled" - each 
plant is of the same type, receives the same amount of sunlight, etc.) and if plants 



that receive more of the plant growth additive grow faster, we are on rather sound 
ground in thinking that the plant growth additive matters.  Since the plants do not 
differ on any factors that could conceivably alter their growth rates except the 
amount of the plant growth additive, it makes sense to think that the growth additive 
increased plant growth rates.  
 By contrast, a political scientist will almost invariably have to use what is 
termed a nonexperimental research design.  With a nonexperimental research design 
the researcher is not able to set the levels of the various independent variables.  The 
inability of the researcher to set the levels of the various independent variables is 
important because it is possible (in some circumstances likely) that the independent 
variables will be related to each other, as well as to the dependent variable.  We refer 
to the situation where the independent variables are strongly related to each other as 
"multicollinearity."      
 For example, suppose we are trying to test a model of partisan affiliation (the 
dependent variable).  Thus, our model will be trying to explain why individual voters 
register as Democrats, Republicans, or Independents.  Please note that we have 
three categories of responses (i.e., Democrat, Republican or Independent) on one 
dependent variable.  Let us say that two of our hypotheses are that the more highly 
educated a voter is the more likely they are to register Republican and the higher the 
voter's income the more likely they are to register Republican.  Note that both 
education and income are independent variables.  Since occupations requiring a 
higher level of education generally pay higher salaries than occupations with lower 
educational requirements, education and income are likely to be related.   If it turns 
out, as is likely, that education and income are strongly related to each other (hence 
we have "multicollinearity"), and both education and income are related to partisan 
affiliation, it can be difficult to determine the impact of either education or income on 
partisan affiliation.  In the worst case situation, where all voters with high levels of 
education have high incomes and vice versa, it would be impossible to determine the 
contribution of either education or income to partisan affiliation.   
 A political scientist would like to assign various levels of education to high 
income voters.  Thus, some high income voters would have low levels of education 
(e.g., through the tenth grade), others would have a somewhat higher level of 
education (e.g., high school graduate) and others a still higher level of education 
(e.g., college graduate).  As all voters with high incomes would not have the same 
level of education, this would eliminate the multicollinearity between income and 
education.  Needless to say, "assigning" levels of education is not possible.  For 
example, how could a political scientist remove four years of education from a voter? 
  While a biologist can often set the level of each independent variable for each 
observation (i.e., each plant) and hence eliminate multicollinearity, a political 
scientist is unlikely to be in a similar situation.   However, as we will see later, 
political scientists using nonexperimental research designs can still "control" for the 
impact of each independent variable on the dependent variable.  We just do it 
statistically rather than by setting the level of each independent variable.   
Furthermore, suppose no voter in our sample had a doctorate in medicine.  While a 
political scientist might like to study the effect of having a doctorate of medicine on 
someone's partisan affiliation, unless some members of our study have such a 



degree, we will be unable to estimate the impact.       
 A political scientist frequently encounters one additional problem: Did change 
in the independent variable precede change in the dependent variable?  In order for a 
change in income to "cause" a change in partisan affiliation (i.e., a voter's income 
increases from $40,000 annually to over $200,000 so they change from being a 
Democrat to a Republican), the change in income would have to occur before the 
change in partisan affiliation.  The fact that most voters with an annual income of 
over $200,000 are Republicans may, or may not, mean that if a Democrat's income 
changes from $40,000 to over $200,000 they will become a Republican.  The 
assumption of our model is that income change precedes partisan change.  While 
this is plausible, it may not be accurate.  It would be preferable to test according to 
the assumptions of our model.  In this case that would literally mean we would have 
to change a voter's income and then see what, if anything, happened to their partisan 
affiliation.  Obviously, we can not do this.  As previously mentioned, the plant 
biologist is in a preferable situation because s/he can first administer the plant 
growth additive and then see how fast the plant grows.   
 The situations I have just described are the crux of the differences between an 
experimental and a nonexperimental research design.  To recap briefly, the previous 
analysis suggested three weaknesses of the nonexperimental research design 
relative to the experimental research design: (1) more severe multicollinearity (e.g., 
voters with high incomes were also likely to have high levels of education); (2) an 
absence of some possible levels of an independent variable (e.g., no one in our 
study of partisan affiliation with a doctorate of medicine); and (3) less confidence 
that change in the level of one of the independent variables preceded change in the 
level of the dependent variable (e.g., did a voter's partisan affiliation change before, 
or after, a change in their income?).  You might well have gotten the impression that 
since political scientists typically have to use a nonexperimental research design 
their findings are not very useful.  Fortunately, this is not the case.  Furthermore, the 
situation is improving.   
 Let me now address each of the three problems mentioned above.  First, in 
many studies the interrelationships between the independent variables are actually 
quite low (i.e., multicollinearity is quite low).  Additionally, even when multicollinearity 
is rather high, we can often accurately estimate the impact of the interrelated 
independent variables.  For example, in a study of voting in the U.S. Senate the 
principle independent variable in which the researcher may be interested (the 
senator's political philosophy) is highly related to some of the other independent 
variables (e.g., the senator's partisan affiliation). Nevertheless, the findings 
concerning the impact of political philosophy are quite strong and reliable.  Hence, 
even though multicollinearity appears to be a major problem, it is not.  Furthermore, 
later in the course we will discuss strategies to deal with severe multicollinearity.  A 
major topic of this course is how we "control" (i.e., set, or hold constant) the level of 
various independent variables.  While our approach to isolating the unique impact of 
each independent variable on the dependent variable is not as desirable as that 
offered by the experimental design, it is nonetheless quite useful.   
 
  



 The second problem of a nonexperimental research design is that we may not 
have observations on some scores for one, or more, of the independent variables.  
For example, perhaps no voters in our sample have a doctorate of medicine degree.  
While potentially important, this problem is usually not catastrophic (terrible pun!).   
With large sample sizes we usually have several cases of each interesting score.  In 
the partisan affiliation study, political scientists typically have samples of 2,500, or 
more, respondents.  Even if we have few medical doctors in such a study, we 
probably have enough individuals with similar educational backgrounds (e.g., 
dentists) for useful statistical analysis.  Furthermore, in many instances the omission 
of a particular category is not of critical importance.  For example, it may not be 
important that we have no respondents with zero dollars in income.  Even the poor 
have some income.  It is probably not important to be able to generalize one's 
findings to situations which are extremely unlikely to ever occur. 
 The third problem of a nonexperimental research design concerns the degree 
of confidence we can have that change in the independent variable(s) precedes 
change in the dependent variable.  Thus, did a change in the voter's income precede 
a change in their partisan affiliation?  This is a serious problem.  However, like the 
preceding two problems, the situation is far from hopeless.  In many practical 
research situations our theory is strong enough to be reasonably certain that change 
in the independent variable preceded change in the dependent variable.    
 Suppose we are interested in the impact of a senator's political philosophy 
(the independent variable) on the probability that the senator will vote in favor of 
shifting the federal tax burden more toward higher income earners (the dependent 
variable).  We can feel quite certain that the senator's political philosophy was 
formed prior to the time they voted on the tax shift.  Few senators either enter the 
Senate without a political philosophy, or significantly change their political 
philosophy after they begin serving in the Senate.  Much prior research has 
established the preceding point.  In such situations, we can be quite confident that 
the level of the independent variable (e.g., the senator's political philosophy) was 
established prior to the score on the dependent variable (i.e., the direction of the 
senator's vote on the tax shift).  Additionally, political scientists have minimized this 
"time of change" problem through the increasing use of time series studies.  A time 
series study means that the data are collected over time (e.g., annually - each year 
from 1950 to the present).  By contrast, a study in which all data are collected at the 
same time point (e.g., all nations of the world in the year 2008) is called a cross-
sectional study.   
 For example, if we study the effect of political party control of the executive 
(i.e., whether the president is a Democrat or a Republican) on such economic 
outcomes as the unemployment rate or the growth rate, we would probably collect 
our data annually for a number of years.  Obviously, we would know what the level of 
the independent variable was (i.e., the political party of the president) prior to any 
change in the dependent variable (e.g., the unemployment rate).  Thus, with time 
series data we can often be more confident of our conclusions than with cross-
sectional data.   A time series style study done by collecting data on the same 
individuals at several time points is called a panel study.  For example a famous 
panel study of political socialization (i.e., how people learn about politics) was done 



interviewing the same people over several decades (M. Kent Jennings and Richard 
G. Neimi, Generations and Politics).  Multiple interviews of the same person at 
several different time points (e.g., in 1986, 1996 and 2006) can give us a more valid 
view of the learning process than by interviewing someone as an adult and asking 
them to "recall" their youth.  
 
 Measuring Variables in Political Science 
 
 After formulating our research design, we need to measure our variables.  
Thus, we will need measures for each independent variable and the dependent 
variable.  Our purpose is to classify outcomes on each variable.  For example, in an 
international relations study we may need to measure the balance of power.  How 
does the researcher do this?   First, we need a "concept" of power.  Second, we need 
an "operationalization" of power.  For this discussion I will assume that we already 
have both a concept and an operationalization of power (see page 2 on the meaning 
of "concept" and "operationalization").    
 Once we have concepts and operationalizations for each variable, we can 
proceed to assigning mathematical values for each possible category on every 
variable.  For example, if we conceptualize power as money and operationalize 
military power in terms of the defense budget, then we need categories for each 
possible outcome.  In this case that would likely mean the amount of money 
(probably in U. S. dollars) spent by each nation over some specified period of time 
(probably annually).  Perhaps, we should have conceptualized power differently.  For 
example, if economic power is part of "defense" (or "offense"!), then perhaps the 
value of the gross national product would be a better indicator of "power" than 
military spending.  While critical, the answers to such questions are often unique to a 
particular topic.  Our consideration here is to assign mathematical values of 
outcomes on a particular variable.    
 There are four different "levels" of measurement.  In the presentation that 
follows, each succeeding "level" retains all of the desirable properties of the 
preceding "level(s)," but adds some useful properties not contained in the preceding 
"level(s)."  The weakest (i.e., "lowest") level of measurement is called nominal 
measurement.  A nominal measure classifies each possible outcome. For example, 
the dependent variable in international relations studies is frequently whether or not 
war occurred.  Let us say we scored "peace" as zero and "war" as one.  This would 
be an example of a nominal level measure.   Each outcome (peace or war) is mutually 
exclusive (i.e., can be only one category).   Thus, peace can not be classified as war 
and vice versa.   Furthermore, every outcome has a category.  Thus, the only 
possible outcomes are peace or war.  Hence, our measure is collectively exhaustive. 
 When a variable has only two categories of responses (e.g., peace or war), it is 
termed a "dummy" variable.  Occasionally, we will have a nominal level measure with 
more than two categories.  For example, suppose we are studying voter attitudes on 
foreign policy (the dependent variable), one of our independent variables might be 
the respondent's race.  Race would obviously have many more than two categories.  
Additionally, there is no inherent ordering to the categories.  The coding would be 
entirely arbitrary.  For example, would it make any more sense to code Asian-



American as zero, White as one, African-American as two than White as zero, Asian-
American as one and African-American as two.  No!!  Thus race is inherently a 
nominal level variable.  
 The ability to rank (i.e., order) categories of responses on a variable is a 
feature of the second level of measurement, ordinal level measurement.  For 
example, in a study of the foreign policy attitudes of voters (the dependent variable), 
political party affiliation of the voter might be a logical independent variable.  Political 
party affiliation is often measured by what is termed a Likert scale (named for 
psychologist Rene Likert).  Such a scale of partisan affiliation could be formulated as 
follows: (1) strong Democrat, (2) weak Democrat, (3) Independent, (4) weak 
Republican, (5) strong Republican.  The preceding scale has an underlying order 
(hence "ordinal") or continuum.  The continuum might be thought of as being from 
the most Democratic (category #1) to the least Democratic (category #5).  Thus, a 
strong Republican is the least likely to support a Democratic candidate.  
Alternatively, a strong Democrat is the "most" Democratic orientation.  Ordinal 
measures add the ability to rank (or "order") to the mutually exclusive and 
collectively exhaustive traits of nominal level measurement.  While such an 
"advance" is useful, we do not know the difference between the categories.  For 
example, is the difference between a strong Democrat and a weak Democrat the 
same as between a weak Democrat  and an Independent?  We have no way of 
knowing.  
 The third level of measurement, interval level measurement, retains the 
mutually exclusive and collectively exhaustive properties of nominal level 
measurement, and the rank (or order) capabilities of ordinal level measurement.  
However, interval level measures also contain an equal mathematical difference 
between categories.  For example, supposing a political scientist were trying to 
explain the likelihood of someone voting.  Weather might be a useful predictor 
variable.  While some conceptualizations of weather would be nominal (e.g., it either 
rained or it did not), temperature would be an interval level measure.  Temperature is 
an interval level measure because there is a constant unit of measure (a degree).  
Thus, the difference between 39 and 40 degrees is the same as the difference 
between 70 and 71 degrees.  This equal unit of measure is lacking in ordinal level 
measures.   
 A measure that has all the properties of an interval level measure (e.g., rank 
ordering and equal mathematical difference between categories) and has the added 
property that a score of zero indicates the absence of the phenomena being 
measured, is called a ratio level measure.  For example, since a temperature of zero 
degrees does not indicate the absence of temperature (i.e., a temperature of zero 
degrees does not mean that there is no temperature but rather a very cold 
temperature), temperature is not a ratio level measure (just keep reading).  However, 
if we measure income by dollars, a score of zero does indicate the absence of money 
(i.e., no dollars).  Thus, a score of zero dollars indicates the complete absence of 
dollars.  For this reason, income measured by dollars is a ratio level measure 
whereas temperature is an interval level measure (the next paragraph will make it 
clearer). 
 



 Ratio level measures are even more useful than interval level measures 
because, as the name implies, we can form ratios.  For example, we can say that 
someone with an income of $40,000 has twice as much income as someone with an 
income of $20,000 (i.e., a "ratio" of 2 dollars to 1 dollar).  The reason we can say this 
is that a score of zero implies the absence of money (i.e., no money).  However, since 
a temperature of zero degrees does not mean the absence of temperature we can not 
say that a temperature of 70 degrees is twice as high (or as warm) as a temperature 
of 35 degrees. 
 While ratio level measures are quite common in political science, interval level 
measures are relatively rare.  Political scientists often measure variables in either 
percentages (e.g., percentage of times a nation resolves its' disputes with other 
nations by peaceful means - where zero indicates no conflict was resolved 
peacefully) or other scales in which zero indicates the absence of the phenomena 
(e.g., a person with zero years of education indicates they have no formal schooling).  
 A basic rule of statistical analysis is that any statistical technique usable with 
a lower level of measurement can be used with a higher level of measurement, but 
not the reverse.  For example, if a statistical technique is acceptable for use with 
nominal level measurement, then it can be also be used with ordinal, interval or ratio 
level measures.  However, if a statistical technique requires an interval level of 
measurement, then it can not be used with nominal or ordinal level measures.   
 While the difference between each level of measurement is important, the 
primary distinction is between the interval and ordinal levels.  Thus, we may usefully 
think of measures as either interval (i.e., interval or ratio) or sub-interval (i.e., nominal 
or ordinal).  As you will read in future assignments, the statistical techniques that 
require at least an interval level of measurement are much more desirable than those 
that require only nominal or ordinal levels of measurement.  The increased precision 
that interval or ratio level measurement provides is very useful. 
Not surprisingly, researchers have tried using techniques designed for interval level 
data with ordinal level data.  This raises an important question: How serious are the 
consequences of treating ordinal level data as interval level data?   As is often the 
case, the seriousness of the consequences differ depending upon the gravity of the 
violation.  A good rule in this regard is: The more categories of responses and the 
more uniform the distribution of responses, the less serious the consequences of 
violating the interval assumption.  For example, it would be preferable to have five 
categories of responses (e.g., strong Democrat, weak Democrat, Independent, weak 
Republican, strong Republican) as opposed to three categories of responses (e.g., 
Democrat, Independent, Republican).  We can further minimize the severity of 
violating the interval assumption by having an approximately uniform distribution of 
responses.  For example, with five categories of responses it would be desirable to 
have each category contain approximately 20% of the responses.  Thus, if 50% of our 
sample selected response "A" but only 5% selected response "E" we could 
potentially have serious problems in treating ordinal data as interval data.  However, 
if we have several categories of responses and a relatively uniform distribution of 
responses, it appears that we can relax the interval assumption without grave 
consequences (Herbert Asher, Causal Modeling, second edition, pp. 37, 90).  In such 
situations, the advantages of interval level techniques probably outweigh the 



consequences of violating the interval assumption.    
 Two important considerations in evaluating a measure of a variable are 
validity and reliability.  Validity assesses how accurately we are measuring what we 
claim to be measuring.  For example, if our measure of the balance of power says 
that two nations have the same degree of power, is this really true?  A second, and 
related concept, is reliability.   A reliable measure is one which, if applied time after 
time, will yield the same results (assuming no change in the level, or score, on a 
particular variable).  For example, a reliable measure of unemployment will report the 
same incidence of unemployment in 2007 as in 2008 if indeed unemployment was the 
same in those two years.      
 It is useful to be able to distinguish between validity and reliability.  Whereas a 
valid measure is always reliable, a reliable measure may not always be valid.  For 
example, a gas gauge scale that consistently reports that your car has three more 
gallons of gas than it actually does is reliable, but not valid.  Your car always has 
three less gallons of gas than the gauge suggests.  However, since the gas gauge 
always reports your car as having three more gallons of gas than it actually does, the 
gauge is reliable.    
 
 Generalizing Our Results 
 
 As mentioned previously (pages 2 - 5), one of the tenets of the scientific 
method is to try and generalize our results.  Thus, is what occurs in a city similar to 
what occurs in a state?  At this point it would be useful to discuss what is termed the 
"unit of analysis."   The "unit of analysis" is what we collect data on.  For example, if 
we survey individual voters the "unit of analysis" is the individual.  On the other 
hand, if we are using the unemployment rate for the entire United States, the nation is 
the "unit of analysis."  Suppose we are interested in explaining variation in statewide 
voter turnout rates.  As literate individuals are more likely to read political 
information (and hence be more political "involved"), a reasonable hypothesis might 
be that literacy (the independent variable) and voter turnout rates (the dependent 
variable) are "positively" associated.  Thus, as literacy increases, voter turnout rates 
would be expected to increase.  Suppose we have the following statewide data on 
the percentage of adults who are literate in the state and the percentage of the 
registered voters who voted in the last election: 
 
 State  Percent Literate Percent Voted 
 
 California  90%                       90% 
 
 Kansas            70%                       70% 
 
 While tempting, you should not interpret the above data to conclusively 
support a hypothesis that the more literate an individual is, the more likely they are to 
vote.  For example, the 90% "voted" figure for California could have occurred by 
having 100% of the 10% illiterate in California vote and only approximately 80% of the 
90% of adult Californians who are literate vote.   In order to infer to the behavior of 



individuals the data should be collected on individuals.  This would mean that 
individuals were surveyed in both of the above states and we knew whether or not 
each individual was literate and whether that same individual voted.  The above data 
are statewide.   Inferring from one "unit of analysis" (here statewide) to another "unit 
of analysis" (here individuals) is called the ecological fallacy.   
 Make sure you do not confuse the "unit of analysis" with other concepts 
previously discussed.  For example, do not confuse the "unit of analysis" with the 
"level of measurement."  There is no necessary relationship.  We could collect 
nominal level data on either an individual, a state, or a nation.   Furthermore, do not 
confuse the "unit of analysis" with either a "variable" or the "number of 
observations".  If we are collecting data on the education and political philosophy of 
100 individuals, there is one "unit of analysis" (the individual), two "variables" (the 
individual's level of education and their political philosophy) and 100 "observations" 
(100 scores on each of the two variables).  Moreover, do not confuse the "unit of 
analysis" with the subject of the study.  The subject of the study might be the impact 
of education (the independent variable) on political philosophy (the dependent 
variable).  The "unit of analysis" is still the individual because the data are collected 
on individuals. Finally, there is no relationship between the "unit of analysis" and the 
type of research design the researcher uses.  Regardless of whether the researcher 
uses an experimental or a non-experimental research design, there is always a "unit 
of analysis."  In the above example, if the research could set the level of an 
individual's education, they would be using an experimental research design.  If the 
researcher could not set the level of an individual's education, they would be using a 
non-experimental research design. In either event, the individual is still the unit of 
analysis.   Since it is highly unlikely a researcher would be able to either add or 
subtract years of education from an individual, such a study would invariably use a 
non-experimental research design. 
 On quizzes I often ask people to write a hypothesis.  Do not write something 
such as: liberal senators do not support the rich.  If you only include "liberal 
senators," then we have a constant instead of a variable because all the senators you 
studied would be liberals (just keep reading).  Remember that in order to be a 
variable, a concept (such as political philosophy) must be able to assume more than 
one value or score (such as: liberal or conservative - two different values or scores).  
Thus, a better formulation would be: liberal senators are less supportive of wealthy 
taxpayers than conservative senators.  The use of "less" (or "more") conveys the 
notion of probability.  While a liberal senator may support wealthy taxpayers, they 
are less likely to support them as frequently as conservative senators.  Better still, 
think in terms of a continuum (or gradation) of scores.  Thus, all liberals are not 
equally liberal just as all conservatives are not equally conservative.  Therefore, a 
better phrasing of the above hypothesis would be: the more liberal the senator, the 
less supportive they are of wealthy taxpayers.  The degree of liberalism of the 
senator is the independent variable while the senator's degree of support for wealthy 
taxpayers is the dependent variable.  This phrasing allows for multiple categories of 
both liberalism (a senator could be very liberal, somewhat liberal, or not very liberal - 
i.e., rather conservative, etc.) and support for wealthy taxpayers (much support, 
some support or perhaps no support). 



  
 Descriptive Statistics 
 
 The purpose of this section is to introduce you to descriptive statistics.   While 
a quiz on this material may involve some calculation, you do not need to memorize 
any formulas or bring a calculator to class.   Do not panic!  The small amount of math 
that is involved is explained step by step.   Honestly, if you can add "5" and "3" you 
should have little trouble. 
 The purpose of descriptive statistics is to summarize and illuminate some 
important characteristics of the data.  For example, suppose you listen to a 
Presidential debate and hear several candidates discuss tax rates.   Perhaps one of 
the candidates mentions tax rates in both the United States and various foreign 
countries. Perhaps the discussion sparks an interest on your part.  So, you decide to 
assess tax rates in the approximately 160 (or more) nations of the world.  What is the 
average tax rate of all nations of the world?  How much variation (difference) is there 
in tax rates among nations of the world?  These are the types of questions that 
descriptive statistics seek to answer.  So the ensuing discussion will make more 
sense, let me mention that a nation's annual gross national product (GNP) is the total 
value of goods (e.g., cars, houses, etc.) and services (e.g., teachers' salaries, nurses' 
salaries, etc.) produced in that nation in a particular year.  Descriptive statistics can 
summarize the data in that they would allow us to make a statement such as the 
following: In 1995, taxes represented approximately 35% of the value of the gross 
national product for the average nation.  This certainly conveys information in a more 
useful form than would 160 slips of paper each containing the percentage of the 
gross national product represented by taxes for a different nation.  Thus, we have 
summarized the data.  This becomes even more imperative with larger data sets 
(e.g., 3000 respondents to a national opinion poll).     
 A first step in uncovering some salient characteristics of our data is to assess 
how many and what proportion of the scores are between two points.  For example, 
how many nations have taxes equal to between 20%-29% of their gross national 
product?  Additionally, this number of nations is what proportion of the total number 
of nations?  A frequency distribution is a method of helping us answer such 
questions.  To construct a frequency distribution of national tax rates for 160 nations 
in the year 2008, we would need to divide the total dollar amount of taxes collected in 
a nation in 2008, by the dollar value of the gross national product in the same year for 
the same nation.  For example, if all governments in the U.S. collected one trillion 
dollars in taxes in 2008, and the value of the U.S. gross national product was three 
trillion dollars in 2008, the tax rate for the U.S. in 2008, would be .33 (1 trillion dollars / 
3 trillion dollars = 1/3 = .33).  Since .33 is a proportion, we need to multiply it by 100 in 
order to obtain a percentage (percentage means "per hundred").  As (.33)(100) = 33, 
this would mean that in 2008 taxes in the U.S. were equal to 33% of our gross 
national product.  Using this same procedure for the additional 159 nations might 
produce a frequency distribution as follows (if the table on page 15 does not make 
sense, just keep reading - there is a discussion of the table immediately after the 
table appears): 
 



 
 Table 1 
 Frequency Distribution of International Tax Rates 
 (Hypothetical Data) 
 
 National Taxes               
 as a Percentage              Percentage  Number of  
 of National GNP  of Nations  Nations 
 
 70% or more                               0%                             0 
 
 60 - 69                                        10                              16 
 
 50 - 59                                        15                              24 
 
 40 - 49                                        40                              64 
 
 30 - 39                                        31                              50 
 
 20 - 29                                          4                                6 
 
             0 - 19                                           0                                0 
                                                             100%                          160 
 
 There are several important points to remember in constructing a frequency 
distribution.   First, have a descriptive title.  The title should convey to the reader 
what information the table contains.  Second, use appropriately sized categories.  
For example, suppose the above table had only two categories, less than 30 percent 
and 30 percent or greater.  If so, 96% of the nations would have been in the same 
category (30 percent or greater).  As the data in Table 1 show, such a categorization 
scheme would have concealed a large amount of variation.  Notice the percentage of 
nations in each category above 39 percent.  All this information would have been 
concealed if one category was used for all nations with taxes equal to 30 percent, or 
more, of the gross national product.  Third, always present both the percentage 
(column 2) and the frequency (column 3).  Percentages "standardize" the data (just 
keep reading - it will be clear shortly).  For example, suppose that we wanted to 
compare how likely a nation was to have taxes consume between 50% and 59% of 
that nation's gross national product in 2008 and in 1958.   According to the table 
above, in 2008 there were 24 nations out of the total of 160 nations, or 15%, (24 is 
15% of 160) that fit this criteria.  Suppose we found that in 1958, 24 nations out of the 
total of 120 nations, or 20%, (24 is 20% of 120) fit this same criteria.   While the 
number of nations, 24, is the same in both 2008 and 1958, the percentage of nations 
in which taxes consumed between 50% and 59% of the gross nation product was 
lower in 2008 than in 1958 (because 15% is lower than 20%).  If we did not adjust for 
the different number of nations in the two time periods (160 vs. 120), we would not 
have known this.  Expressing the number 24 as a percentage placed both 2008 and 



1958 on a common measuring scale which then revealed a difference between the 
two years that would not have been apparent had we just examined the number of 
nations in the 50% to 59% category in both years.  As the reader may want to 
reorganize the data, it is also important to show the frequency (i.e., number of 
nations) in each category. 
 
 Measures of Central Tendency and Measures of Dispersion 
 
 While frequency distributions are important, they do not convey all the salient 
characteristics of a variable.  Two additional questions that would be useful to 
answer are: (1) What is the average score; and (2) How representative is the average 
score of all the scores?  
 We often think in terms of an "average."  You may assess how well you scored 
on a test by comparing your score with "the average."  There are several different 
measures of "the average."  The statistics pertaining to the average are termed 
"measures of central tendency."  There are three commonly used measures of 
central tendency.  The appropriate measure depends upon three factors: (1) the 
question you want to answer; (2) the level of measurement of your data; and (3) the 
distribution of the scores.   Remember from the notes on the level of measurement 
that while a nominal level measure categorizes the data (e.g., pear, oak and elm are 
three categories of trees), it neither orders the data (e.g., are pear trees "higher" than 
oak trees?) nor provides an equal unit of measure between categories (e.g., is the 
difference between pear and oak the same as between oak and elm?).   Given these 
limitations, the only method of measuring the average for a nominal level measure is 
to see which category occurs the most frequently.  Such a measure is called "the 
mode."  For example, the mode for the following scores: 2, 3, 4, 5, 5, and 6  is 5.  If 
two different scores are equally numerous then we have what is termed a "bi-modal" 
distribution (just keep reading - the next sentence will make it clear).  For example, 
suppose we had the following scores: 1, 1, 2, 3, 4, 5, 5.   Since "1" and "5" both 
appear twice and no other score appears more than once, both "1" and "5" are 
modes.  As there are two modes, the scores are "bi-modal." 
 If our data are ordinal (on "ordinal" see page 11), in addition to the mode, we 
may also employ a second measure of central tendency, the median.  The median is 
the number that divides the distribution into two equal parts.  For the following 25 
scores: 0, 1, 1, 2, 2, 2, 2, 3, 3, 3, 4, 4, 5, 6, 6, 6, 6, 6, 7, 8, 9, 75, 100, 125 and 300 the 
median is the "middle" score (i.e., if 25 scores then the 13th score from the left) 
which is 5.  Note also that the mode for this data is 6.  If we had an even number of 
scores the median would be the mid-point between the two middle scores.  For 
example, with ten scores the median would be midway between the fifth and sixth 
scores.  
 Look again at the 25 scores that we just used in the example of the median.  
Notice that the last four scores (75, 100, 125 and 300) are much higher than the other 
scores.  However, if a score is the same (or higher) than the middle score, the median 
is unaffected (e.g., if the last four scores were 14, 15, 16 and 17 the median would 
still be 5).  It is this feature of the median that makes it usable with ordinal level data. 
Remember that ordinal level data tell the rank, but not the precise numerical 



difference between the scores.  Thus, if we just want to select the middle score, all 
we have to know is the ranking of the scores, not the degree of difference between 
the scores.  However, if we have interval or ratio level data (see pp. 11-12), we also 
know the numerical difference between the categories.  It would seem natural to 
develop a measure of the average that took account of the numerical differences 
between the scores.   This is the idea behind the mean.  The mean of a group of 
scores is the total of the scores divided by the number of scores.  For example, the 
mean of the following scores: 10, 20 and 60 is 30 (because 10 + 20 + 60 = 90 and 90/3 
= 30). Hence, the mean tells us the average per score. 
 In the calculation of the median, we used the 25 scores listed above.  The 
mean of these 25 scores is 27.44 (because if you add the 25 scores above together 
they total 686 and 686/25 = 27.44).  Obviously, the median (5) is quite different than 
the mean (27.44) for this data.   This great difference between the median and the 
mean occurs because the highest four scores are so much greater than the other 21 
scores.  While the size of the numerical difference between scores has no effect on 
the median, it has a great impact on the mean.  Remember that one of the criteria for 
choosing a measure of central tendency is the distribution of the data.  Because the 
extreme scores distort the mean value of the 25 scores listed on the previous page, I 
would recommend using the median as the measure of central tendency for the 
above data set.  However, note that if we had not had interval or ratio level data, we 
could not have calculated the mean.  Hence, we would have had to use either the 
median or the mode as our measure of central tendency.  Additionally, if you wanted 
to know which score occurred the most frequently, you would use the mode as your 
measure of central tendency.   
 By providing a notion of "the average," measures of central tendency reveal 
important characteristics of the data.   However, a measure of central tendency does 
not tell us how representative the average is of all the scores in the distribution.  For 
example, if you were a professor and found that the mean score on an exam was 50, I 
think you would want to know if the mean of 50 occurred because nearly all students 
scored approximately 50, or because perhaps half the students scored 0 and the 
other half scored 100.  In both circumstances the mean would be the same, but the 
ramifications for how you taught the course would be entirely different.   This 
example illustrates the need for what are termed "measures of dispersion."  The 
purpose of measures of dispersion is to assess how representative the average is of 
all the scores in the distribution. 
 The simplest measure of dispersion is called "the range."  The range is the 
difference between the highest and lowest score.  As the range implies order, we 
would need at least an ordinal level of measure to compute the range.  While the 
range is simple, it does not convey as much information as we might like.  For 
example, suppose we return the glorious 1980s when American life was good, pure 
and Donald Trump was in financial ascendence.   Relaxing in the plush surroundings 
of Trump Tower, I joyously calculate Sir Donald's income for the current year.  When I 
compare his income to that for each other American family, I discover that not only is 
Trump's income higher than that for any other American family, but that no other 
American family is within $1,000,000 of Trump's income.  If we were to use the range 
as a measure of dispersion, we would simply take the difference between Trump's 



income and the lowest family income.  However, by using only two scores we have 
masked the important information that Trump's income was by far the highest.  Thus, 
the range is insensitive to any scores except the two most extreme (highest and 
lowest).  We can minimize this problem somewhat by using several additional data 
points.  For example, in addition to the highest and lowest scores we could include 
the score wherein 1/4 of the families were above and wherein 1/4 of the families were 
below.  Such a measure is referred to as the "interquartile" range.   
 While the interquartile range conveys more information than the range, it 
would be desirable to have a measure of dispersion based upon all the scores in the 
distribution.  Intuitively, we might think that we could measure dispersion by 
subtracting the mean from each score.  The difference between a single score and 
the mean would indicate the amount of "deviation," or "dispersion" of that particular 
score from the mean.  If we summed (added) each of these "dispersions" we would 
have the total amount of dispersion present in our data.   We could then divide this 
total by the number of observations in order to obtain a typical deviation (i.e., the 
deviation per score).  While there is a mathematical "problem" in this method, the 
procedure we have just outlined is the basis of the approach we will ultimately use.   
 The mathematical "problem" with the approach we just formulated is that it 
must result in an answer of zero.  This is because one of the properties of the mean 
is that the total amount of "distance" below the mean must be equal to the total 
amount of "distance" above the mean.  For example, the mean of the following 
scores: 4, 6, and 8 is 6 (because 4 + 6 + 8 = 18 and 18/3 = 6).  The "average" of the 
deviations of these same scores would be "0" [because 4 - 6 = -2, 6 - 6 = 0,  8 - 6 = 2; 
adding these deviations  equals 0 (i.e., -2 + 0 + 2 = 0) and then dividing this total by 
the number of scores yields "0" (i.e., 0/3 = 0)].  The value of the "positive" deviations 
from the mean (i.e., scores higher than the mean) equals the value of the "negative" 
deviations from the mean (i.e., scores lower than the mean) and thus the "total" 
deviation from the mean must equal zero.  Therefore, we are left with the impression 
that there is no deviation (i.e., no variation) in our data.  Thus, we would mistakenly 
conclude that the mean occurred because every score was the same.   
 This problem can be rectified by taking the "absolute" value of each deviation 
from the mean.  Hence, a deviation of -2 would be treated as a deviation of 2.  As we 
would be adding a series of positive numbers, the cancellation problem I just 
discussed would not occur (i.e., in the example above remember that -2 + 0 + 2 = 0 
and hence our deviation measure ended up as 0/3 = 0; taking "absolute" values 
would have instead produced a typical deviation of 1.33 because 2 + 0 + 2 = 4 and 4/3 
= 1.33)  This revised procedure (i.e., using "absolute" values) is called the average 
deviation.  While such a measure tells us the average amount of deviation from the 
mean for a typical score, the result is still not as useful as we might prefer.  For 
example, suppose we calculated the average deviation and found that it was 5.7.  
What statement(s) could we make?  We could say that the typical score deviated 5.7 
units (in whatever units the variable was measured, dollars, percentage points, etc.) 
from the mean.   
 We could further amplify the preceding approach by taking the average 
deviation as a percentage of the mean (even if you are confused, just keep reading 
through the end of this paragraph). Thus, an average deviation of 5.7 would seem 



small if the mean were 1,000, but large if the mean were 10.  Therefore, an obvious 
approach would be to divide the average deviation by the mean (just keep reading).  
This would yield a "proportion" which we could then multiply by 100 in order to 
obtain a "percentage" (just keep reading).  For example, an average deviation of 5.7 
is 57% of a mean of 10 (5.7/10 = .57 and (.57)(100) = 57).  However, an average 
deviation of 5.7 is only .57% (approximately 1/2 of 1%) of a mean of 1000 (5.7/1000 = 
.0057 and (.0057)(100) = .57).  If the average deviation is 57% of the mean, it tells us 
that the mean was achieved by many scores being quite far from the mean (e.g., the 
mean of 0 and 10 is 5 because (0 + 10)/2 = 10/2 = 5 but neither 0 nor 10 is very close 
to 5).  On the other hand, if the average deviation is only 1/2 of 1% of the mean, this 
tells us that virtually all the scores are quite close to the mean.     
 While the aforementioned procedure is a definite improvement over the range, 
we can still do better.  A critical question to ask with the result from any statistic is: 
How can you interpret the answer?  In the last paragraph I outlined an approach to  
interpreting the average deviation.  However, we could improve upon my approach if, 
in addition to taking the average deviation as a percentage of the mean, we could 
also compare the average deviation to a known distributional formula.  For example, 
suppose the mean of a group of scores was 50 and the average deviation was 5.  
Using my approach we could say that the average deviation was 10% of the mean 
[5/50 = .10 and (.10)(100) = 10].  This would suggest that the mean was achieved by 
most scores falling pretty close to the mean.  Put differently, when we consider the 
average deviation relative to the mean, dispersion seems low.  However, it would be 
even more informative to give a percentage distribution of the scores.  For example, 
it would be desirable to be able to say that approximately 68% of the scores were 
within one average deviation of the mean.  Given our results (mean = 50, average 
deviation = 5) this would mean that approximately 68% of the scores would fall 
between 45 and 55.  Unfortunately, we can not make such a statement with the 
average deviation.  In order to obtain a percentage distribution of the scores we need 
to calculate the standard deviation.  
 While our purpose is to illustrate the calculation and use of the standard 
deviation, this is a good point to introduce some statistical symbols and 
mathematical procedures.  Do not panic!  While a quiz on this material may involve 
some calculation, you do not need to memorize any formulas or bring a calculator to 
class. I will provide any formulas which are needed on the quiz.  You only must know 
how to work the formulas on pages 21-24.  Just follow how I work the computations 
on pages 21-24 (i.e., how I calculate the various answers).  Finally, you will not have 
to calculate a square root.  The quizzes on this material will have you working largely 
with single digit numbers.  For example, you might have to subtract 3 from 5 (i.e., 5 - 
3 = 2).  Wasn't that difficult?  If we are feeling "adventurous" later on we might 
actually try multiplying 2 times 2!!  Wow!!!  Do you really need a calculator to do 
these computations?  I hope not!  When people have trouble on a computational quiz 
it is almost always because they do not know the order of mathematical operations.  
For example, do you add and then multiply or multiply and then add?  A calculator 
can not help you with the order of mathematical operations.  The calculator assumes 
you know the order of operations.  That is why a calculator is of such little value on 
the type quiz you will take.   



 
 The standard deviation is undoubtedly the most often used measure of 
dispersion in political science.  As just mentioned, the standard deviation will permit 
us to make what I will term "percentage distribution" statements.  Just keep reading!! 
For example, let us say that you are studying international relations. 
International relations scholars have often quantitatively tested interesting models 
concerning the factors (i.e., independent variables) that explain why some nations 
are more likely to resolve their conflicts peacefully than other nations.  The 
dependent variable in this type of study might be the percentage of times a nation 
resolves its disputes peacefully.  Peaceful resolution would mean that a dispute was 
resolved without violence.  Typically, international relations scholars pretty much 
agree on what  constitutes a "dispute."  So, through historical records we construct 
the number of disputes that each nation has been involved in over the last 100 years. 
 While the name and boundaries of many nations have changed over the past 100 
years, we could still obtain data for a large number of nations.   Using the historical 
record, (continued on the next page)   
 

 
NOTE: Odd page breaks will occur when there are formulas.  This material was 

originally written in Word Perfect and the equations do not automatically transfer 
from one word processing package to another.  I don’t know how to use equation 
“boxes” in Microsoft Word.  Additionally, in some cases there are drawings that I 
paid to have made that I want to transfer to this edition of the material.  So, just be 
prepared for an occasional page fragment!   
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