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The Scientific Method in Political Science 
 
 Political scientists are interested in a wide variety of different topics.  Some 
political scientists study the causes and consequences of war.   Other political 
scientists study why voters support a particular candidate and what difference it 
makes which candidate or party is victorious.   For political scientists studying these 
and a vast array of other topics, quantitative application of the scientific method 
offers one of the most useful approaches to increasing knowledge.  While the 
scientific method is not useful in answering questions posed by normative political 
philosophers (e.g., What is justice?), it is extremely valuable in understanding how 
and why political phenomena occur.  As a first step in this process, we need to 
understand what the scientific method is.  Let me suggest that science is defined by 
its methodology, not its subject matter.  Thus, it is how one studies something, not 
what is studied, that determines whether or not the researcher is using the scientific 
method.  Throughout this course I will use the following definition of science: a 
communicable (can communicate to those who do not "know"), falsifiable 
(possibility of non-confirmation), and logical (conclusions follow from the facts) 
method of pursuing knowledge involving the recognition and formulation of a 
problem, the collection of data through observation and experiment, and the 
formulation and testing of hypotheses.  That is a long and involved definition! 
 In order to fully understand the above definition of science, it is useful to break 
it into parts.  As stated in the definition, "communicable" means that your study can 
be understood by those who are not already part of it.  Thus, you need to be able to 
explain your method to other researchers so that they can both check your work for 
accuracy and apply it to new circumstances.  For example, if you were testing a new 
vaccine, future researchers might wish to replicate (repeat) your work on the same 
type of subjects and then administer it to a different group.  Therefore, other 
researchers would have to know both the composition of your vaccine and how the 
tests of it were conducted.   
 The second portion of the above definition of science concerns "falsifiability." 
Falsifiability means that there must be some outcome which would countermand 
what we expect to happen.  For example, suppose you said that if God wants you to 
go to Pittsburgh he will provide you with the plane tickets.  In terms of falsifiability, 
this would not be a scientific test of the existence of God.  Regardless of whether 
you received the tickets or not, you would not doubt the existence of God.  No 
possible outcome would lead to a rejection of the premise that God exists. 
 The next portion of the definition of science concerns logic.  As stated above, 
your conclusions must follow from the facts.  You cannot conclude that the 
Democratic party favors a greater tax burden on the wealthy than the Republican 
party when the facts suggest otherwise.    
 The next sections of the definition of science are rather straightforward.  
Certainly, you must formulate a problem or else there is nothing to study.  
Furthermore, you collect data which bear on the problem (or topic) you are studying. 
For example, you collect data on the differences between the tax proposals offered 
by the Democratic and Republican parties.    
  



 The final portion of the definition of science concerns the formulation and 
testing of hypotheses.  Let me define a hypothesis as follows: a relational statement 
between two, or more, concepts which is deductively plausible and empirically 
generalizable.  I think it would be useful to begin by defining a concept.  A concept is 
an abstraction representing an object, a property of an object, or a certain 
phenomena.  For example, "poverty" could be a concept. Should we conceptualize 
"poverty" in "relative" or "absolute" terms?   A person with an income of $20,000 
could be thought of as impoverished relative to someone who had an income of 
$500,000.  On the other hand one could argue (as conservatives generally do) that 
poverty is absolute.  Thus, the determination of poverty would not concern how 
much income you had relative to someone else, but rather whether you could attain a 
particular standard of living (e.g., avoid hunger).  My point is that a researcher 
measuring poverty has to use one of these conceptualizations.  Obviously, it matters 
which one they choose.  One of the great advantages of the scientific method is that 
the researcher must state and defend their choice.  By so doing, other researchers 
can then use the same, or different conceptualizations, and see to what extent the 
results are affected by the conceptualization employed.   
 A concept that can assume different values is called a variable.  For example, 
since all governments do not have the same degree of liberalism, governmental 
liberalism is a variable.  Two particular types of variables are fundamental to the 
scientific method (particularly hypothesis testing).   The presumed "causal" factor is 
referred to as the "independent" (or "predictor") variable and the effect is referred to 
as the "dependent" variable.   Suppose we hypothesize that the degree of 
governmental liberalism alters the percentage of income going to the poor.  Since 
governmental liberalism is presumed to effect the percentage of income going to the 
poor, governmental liberalism is the independent variable and the percentage of 
income going to the poor is the dependent variable.  Alternatively, you might think of 
it this way: the score on the dependent variable depends upon the score on the 
independent variable (not the other way around).  
 An operationalization is the measurement of a concept.  For example, how do 
you quantify whatever conceptualization of "income" you are using?  If you receive 
medical benefits from the government does this count as "income"?   Should the use 
of a company car count as "income"?  The researcher must explain how they 
measure "income" and defend why their measure is appropriate. 
 A relational statement is a causal or associational link between concepts.  For 
example, suppose we hypothesize that the liberalism of the federal government is 
"positively" associated with the percentage of income going to the poor.  The 
previous statement is relational because it depicts an association between the 
concepts (liberalism of the federal government and the percentage of income going 
to the poor).   Notice the use of the directional term "positive."  A "positive" 
relationship means that higher scores on one variable are associated with higher 
scores on the other variable.  For example, if the liberalism of the federal government 
and the percentage of income going to the poor are "positively" related (i.e., 
associated) it would mean that if the score on federal government liberalism were to 
increase from say 50% to 75% (e.g., by electing many more Democratic congressmen 
and senators) the percentage of the national income going to the poor might then 



increase from 10% to 12%.    
 Relationships between variables can also be "negative."  A "negative" 
relationship means that higher scores on one variable are associated with lower 
scores on the other variable.  For example, if the liberalism of the federal government 
and the percentage of income going to the poor are "negatively" related it would 
mean that if the score on federal government liberalism were to increase from 50% to 
75% the percentage of the national income going to the poor might then decrease 
from 10% to 8%.      
 Deductive plausibility means that the researcher deduces (reasons from) 
something else which is plausible.  Thus, if we observe that Democrats tend to be 
more liberal than Republicans we may reasonably deduce from this that a particular 
Democratic candidate is likely to be more liberal than their Republican opponent 
(this is what we hypothesize and will be testing).   
 Empirically generalizable means that our findings are applicable to much of 
the observable (empirical) world.  We want to generalize as far as we can.  From 
Democrats and Republicans in California to Democrats and Republicans in the 
United States as a whole.  Any theory (a theory is just a more certain hypothesis) is 
more valuable the wider its applicability.  For example, isn't the anti-crime argument 
for the death penalty (that the death penalty will lower the murder rate) actually just 
an application of the basic economic theory that the more something costs (here 
"costs" would refer to the penalty) the less of it will be sold (each murder would be 
an occurrence, i.e., a "sale")?   
 Basically, the scientific process is just a continual testing of hypotheses in 
order to find their limits (i.e., how far they can be generalized) and then to modify the 
theory in light of the findings.  For example, in most western democracies the poor 
are more supportive of liberal governments than conservative governments.  Since it 
is logical to hypothesize that a government will pursue policies that 
disproportionately benefit its supporters, it would seem logical to hypothesize that 
the degree of liberalism of the government is positively associated with the 
percentage of income going to the poor.  Thus, higher scores on our measure of 
governmental liberalism should be associated with higher scores on our measure of 
the percentage of income going to the poor.  In testing this hypothesis we may find 
that government today has either a greater, or lesser, impact on the distribution of 
income than during the 1950s.   
 Another benefit of the scientific method is that the user must make their model 
explicit.  For example, it is possible that the liberalism of the government has little 
"direct" effect on the percentage of income going to the poor.  Since governments 
often control policy instruments (e.g., the money supply), as opposed to policy 
outcomes (e.g., the percentage of income going to the poor), it is likely that much of 
the effect of government on the percentage of income going to the poor would be 
"indirect" (i.e., through other factors).  For example, a more liberal government could 
increase the money supply.  A larger supply of money lowers interest rates which, in 
turn, make borrowing less expensive.  The reduced cost of borrowing money 
generally causes plants to expand which, in turn, lowers the unemployment rate.  As 
the unemployment rate decreases, the percentage of income going to the poor 
typically increases.   My point is that the user of the scientific method must explain 



which variables effect which other variables (i.e., they must make their "model" 
explicit).   
 Because users of the scientific method must make their models and measures 
explicit, other researchers can replicate (i.e., repeat) and expand on the original 
study.  Over the past two decades, political scientists have tested the governmental 
liberalism hypotheses I have been mentioning in most all major industrialized 
democracies in the world.  They have used an impressive group of alternative 
income measures, time periods, and models.  For example, in addition to studying 
the effect of governmental liberalism on the money supply, political scientists have 
also examined the effects of governmental liberalism on the amount and distribution 
of the tax burden over various income groups, numerous measures of social welfare 
spending and the amount of economic growth.     
 Users of the scientific method usually have two goals in mind. Typically, the 
first goal of a user of the scientific method is explanation.  In our example we are 
trying to explain why the percentage of income going to the poor varies (i.e., is not 
always the same - hence a "variable").  Our hypothesis is that variation in the 
liberalism of the government is what causes variation in the percentage of income 
going to the poor.  A large literature (to which political scientists have greatly 
contributed) has rather firmly established that governmental liberalism is positively 
associated with the percentage of income going to the poor.  However, while 
governmental liberalism is likely to positively influence the percentage of income 
going to the poor, other factors (i.e., independent variables) are also likely to 
influence the percentage of income going to the poor (e.g., international economic 
trends).  The result of incorporating these additional independent variables in the 
data analysis is a richer explanation of why the percentage of income going to the 
poor varies.   
 A second goal of users of the scientific method is prediction.  Applied to our 
hypothesis this would mean to predict how much the percentage of income going to 
the poor would increase, or decrease, depending upon a particular amount of 
change in the liberalism of the government.  Often these two goals are related.  As 
our ability to "explain" a process improves, our predictions are likely to become 
more accurate.  However, prediction is more difficult than explanation.  The impact of 
some of the independent variables may change in the future.  Consequently, 
accurate predictions are difficult.  Nevertheless, political scientists have formulated 
relatively accurate forecasts of the share of the vote American political parties will 
receive (the dependent variable) based upon changes in various economic and non-
economic variables (the independent variables).  However, typically the major goal of 
contemporary quantitative political science is explanation.   
 
 Research Design 
 
 Before continuing, make sure you understand that pages 2-5.  The topics dealt 
with over pages 2-5 are the foundation of every reading in this course.  The first quiz 
(coming the day this reading assignment is due) may well ask you to define a 
variable, abstract a hypothesis from written material, and/or to explain the difference 
between a "positive" and "negative" relationship.  You will need the information from 



the aforementioned lecture on the scientific method for quizzes 1-3 and the final 
examination.   
 The main purpose of pp. 6-14 is to discuss the early stages of a quantitative 
research project.  The first decision any researcher must make is what topic to study. 
  A political scientist should be able to defend their choice of a topic on normative 
grounds. Thus, why is the topic important?  For example, why should we study the 
causes of war?  I think one could make an excellent case that war is undesirable and, 
consequently, that determining why war starts is a logical pre-condition to 
minimizing its occurrence.  Although a normative defense of a topic is important, it is 
typically handled in several sentences.  The central contribution of quantitative 
research is to explain what takes place and why, not what is "good" or "bad."  
 In quantitative research (the topic of this course), we are usually testing a 
theory of behavior.  Whether it is the behavior of governments or individuals, we will 
probably be examining the causes (and/or consequences) of some form of political 
behavior. 
Any quantitative (i.e., empirical) study is trying to perform two fundamental tasks.  
First, we are trying to test and refute hypotheses.  For example, is the liberalism of a 
government positively associated with the amount of government support for the 
poor?  Second, we are trying to estimate the magnitude of the relationships between 
the variables (Hanushek and Jackson, Statistical Methods for Social Scientists, pp. 2-
3).  For example, the replacement of a Republican President with a Democratic 
President would result in how much more support for the poor? 
 After formulating the hypotheses (defined on pages 3-5), we need to begin 
thinking about how we will test them.  The strategy by which one tests their 
hypotheses is called a research design. 
While this may be a bit of an oversimplification, there are two basic types of research 
designs.  The first type of research design is called an experimental design.  With an 
experimental design, the researcher can adjust the level (i.e., amount/scores) on 
each of the independent variables.  For example, supposing a biologist formulates a 
new plant growth additive and wishes to test its effectiveness.  The amount of the 
plant growth additive each plant receives would be the independent variable.  The 
growth rate of the plant would be the dependent variable.  The biologist would 
probably think that factors other than the amount of the plant growth additive would 
alter the rate of plant growth.  Thus, the plant biologist would want additional 
independent variables.  For example, such factors as the type of plant, plant 
condition, water quality and the amount of sunlight could all affect the growth rate of 
a plant.   Each of these factors, in addition to the growth additive, is an independent 
variable.  The advantage of using an experimental research design is that the 
researcher can set the level of each of the independent variables.  For example, the 
plant biologist can determine what types of plants will be used, the amount of the 
growth additive each plant will receive and the amount of sunlight each plant is 
exposed to.  Being able to set the level (i.e., amount) of each of the independent 
variables is an extremely useful capability.  If all conditions (i.e., independent 
variables) other than the independent variable in which the plant biologist is most 
interested (the growth additive) are set at the same level (i.e., "controlled" - each 
plant is of the same type, receives the same amount of sunlight, etc.) and if plants 



that receive more of the plant growth additive grow faster, we are on rather sound 
ground in thinking that the plant growth additive matters.  Since the plants do not 
differ on any factors that could conceivably alter their growth rates except the 
amount of the plant growth additive, it makes sense to think that the growth additive 
increased plant growth rates.  
 By contrast, a political scientist will almost invariably have to use what is 
termed a nonexperimental research design.  With a nonexperimental research design 
the researcher is not able to set the levels of the various independent variables.  The 
inability of the researcher to set the levels of the various independent variables is 
important because it is possible (in some circumstances likely) that the independent 
variables will be related to each other, as well as to the dependent variable.  We refer 
to the situation where the independent variables are strongly related to each other as 
"multicollinearity."      
 For example, suppose we are trying to test a model of partisan affiliation (the 
dependent variable).  Thus, our model will be trying to explain why individual voters 
register as Democrats, Republicans, or Independents.  Please note that we have 
three categories of responses (i.e., Democrat, Republican or Independent) on one 
dependent variable.  Let us say that two of our hypotheses are that the more highly 
educated a voter is the more likely they are to register Republican and the higher the 
voter's income the more likely they are to register Republican.  Note that both 
education and income are independent variables.  Since occupations requiring a 
higher level of education generally pay higher salaries than occupations with lower 
educational requirements, education and income are likely to be related.   If it turns 
out, as is likely, that education and income are strongly related to each other (hence 
we have "multicollinearity"), and both education and income are related to partisan 
affiliation, it can be difficult to determine the impact of either education or income on 
partisan affiliation.  In the worst case situation, where all voters with high levels of 
education have high incomes and vice versa, it would be impossible to determine the 
contribution of either education or income to partisan affiliation.   
 A political scientist would like to assign various levels of education to high 
income voters.  Thus, some high income voters would have low levels of education 
(e.g., through the tenth grade), others would have a somewhat higher level of 
education (e.g., high school graduate) and others a still higher level of education 
(e.g., college graduate).  As all voters with high incomes would not have the same 
level of education, this would eliminate the multicollinearity between income and 
education.  Needless to say, "assigning" levels of education is not possible.  For 
example, how could a political scientist remove four years of education from a voter? 
  While a biologist can often set the level of each independent variable for each 
observation (i.e., each plant) and hence eliminate multicollinearity, a political 
scientist is unlikely to be in a similar situation.   However, as we will see later, 
political scientists using nonexperimental research designs can still "control" for the 
impact of each independent variable on the dependent variable.  We just do it 
statistically rather than by setting the level of each independent variable.   
Furthermore, suppose no voter in our sample had a doctorate in medicine.  While a 
political scientist might like to study the effect of having a doctorate of medicine on 
someone's partisan affiliation, unless some members of our study have such a 



degree, we will be unable to estimate the impact.       
 A political scientist frequently encounters one additional problem: Did change 
in the independent variable precede change in the dependent variable?  In order for a 
change in income to "cause" a change in partisan affiliation (i.e., a voter's income 
increases from $40,000 annually to over $200,000 so they change from being a 
Democrat to a Republican), the change in income would have to occur before the 
change in partisan affiliation.  The fact that most voters with an annual income of 
over $200,000 are Republicans may, or may not, mean that if a Democrat's income 
changes from $40,000 to over $200,000 they will become a Republican.  The 
assumption of our model is that income change precedes partisan change.  While 
this is plausible, it may not be accurate.  It would be preferable to test according to 
the assumptions of our model.  In this case that would literally mean we would have 
to change a voter's income and then see what, if anything, happened to their partisan 
affiliation.  Obviously, we can not do this.  As previously mentioned, the plant 
biologist is in a preferable situation because s/he can first administer the plant 
growth additive and then see how fast the plant grows.   
 The situations I have just described are the crux of the differences between an 
experimental and a nonexperimental research design.  To recap briefly, the previous 
analysis suggested three weaknesses of the nonexperimental research design 
relative to the experimental research design: (1) more severe multicollinearity (e.g., 
voters with high incomes were also likely to have high levels of education); (2) an 
absence of some possible levels of an independent variable (e.g., no one in our 
study of partisan affiliation with a doctorate of medicine); and (3) less confidence 
that change in the level of one of the independent variables preceded change in the 
level of the dependent variable (e.g., did a voter's partisan affiliation change before, 
or after, a change in their income?).  You might well have gotten the impression that 
since political scientists typically have to use a nonexperimental research design 
their findings are not very useful.  Fortunately, this is not the case.  Furthermore, the 
situation is improving.   
 Let me now address each of the three problems mentioned above.  First, in 
many studies the interrelationships between the independent variables are actually 
quite low (i.e., multicollinearity is quite low).  Additionally, even when multicollinearity 
is rather high, we can often accurately estimate the impact of the interrelated 
independent variables.  For example, in a study of voting in the U.S. Senate the 
principle independent variable in which the researcher may be interested (the 
senator's political philosophy) is highly related to some of the other independent 
variables (e.g., the senator's partisan affiliation). Nevertheless, the findings 
concerning the impact of political philosophy are quite strong and reliable.  Hence, 
even though multicollinearity appears to be a major problem, it is not.  Furthermore, 
later in the course we will discuss strategies to deal with severe multicollinearity.  A 
major topic of this course is how we "control" (i.e., set, or hold constant) the level of 
various independent variables.  While our approach to isolating the unique impact of 
each independent variable on the dependent variable is not as desirable as that 
offered by the experimental design, it is nonetheless quite useful.   
 
  



 The second problem of a nonexperimental research design is that we may not 
have observations on some scores for one, or more, of the independent variables.  
For example, perhaps no voters in our sample have a doctorate of medicine degree.  
While potentially important, this problem is usually not catastrophic (terrible pun!).   
With large sample sizes we usually have several cases of each interesting score.  In 
the partisan affiliation study, political scientists typically have samples of 2,500, or 
more, respondents.  Even if we have few medical doctors in such a study, we 
probably have enough individuals with similar educational backgrounds (e.g., 
dentists) for useful statistical analysis.  Furthermore, in many instances the omission 
of a particular category is not of critical importance.  For example, it may not be 
important that we have no respondents with zero dollars in income.  Even the poor 
have some income.  It is probably not important to be able to generalize one's 
findings to situations which are extremely unlikely to ever occur. 
 The third problem of a nonexperimental research design concerns the degree 
of confidence we can have that change in the independent variable(s) precedes 
change in the dependent variable.  Thus, did a change in the voter's income precede 
a change in their partisan affiliation?  This is a serious problem.  However, like the 
preceding two problems, the situation is far from hopeless.  In many practical 
research situations our theory is strong enough to be reasonably certain that change 
in the independent variable preceded change in the dependent variable.    
 Suppose we are interested in the impact of a senator's political philosophy 
(the independent variable) on the probability that the senator will vote in favor of 
shifting the federal tax burden more toward higher income earners (the dependent 
variable).  We can feel quite certain that the senator's political philosophy was 
formed prior to the time they voted on the tax shift.  Few senators either enter the 
Senate without a political philosophy, or significantly change their political 
philosophy after they begin serving in the Senate.  Much prior research has 
established the preceding point.  In such situations, we can be quite confident that 
the level of the independent variable (e.g., the senator's political philosophy) was 
established prior to the score on the dependent variable (i.e., the direction of the 
senator's vote on the tax shift).  Additionally, political scientists have minimized this 
"time of change" problem through the increasing use of time series studies.  A time 
series study means that the data are collected over time (e.g., annually - each year 
from 1950 to the present).  By contrast, a study in which all data are collected at the 
same time point (e.g., all nations of the world in the year 2008) is called a cross-
sectional study.   
 For example, if we study the effect of political party control of the executive 
(i.e., whether the president is a Democrat or a Republican) on such economic 
outcomes as the unemployment rate or the growth rate, we would probably collect 
our data annually for a number of years.  Obviously, we would know what the level of 
the independent variable was (i.e., the political party of the president) prior to any 
change in the dependent variable (e.g., the unemployment rate).  Thus, with time 
series data we can often be more confident of our conclusions than with cross-
sectional data.   A time series style study done by collecting data on the same 
individuals at several time points is called a panel study.  For example a famous 
panel study of political socialization (i.e., how people learn about politics) was done 



interviewing the same people over several decades (M. Kent Jennings and Richard 
G. Neimi, Generations and Politics).  Multiple interviews of the same person at 
several different time points (e.g., in 1986, 1996 and 2006) can give us a more valid 
view of the learning process than by interviewing someone as an adult and asking 
them to "recall" their youth.  
 
 Measuring Variables in Political Science 
 
 After formulating our research design, we need to measure our variables.  
Thus, we will need measures for each independent variable and the dependent 
variable.  Our purpose is to classify outcomes on each variable.  For example, in an 
international relations study we may need to measure the balance of power.  How 
does the researcher do this?   First, we need a "concept" of power.  Second, we need 
an "operationalization" of power.  For this discussion I will assume that we already 
have both a concept and an operationalization of power (see page 2 on the meaning 
of "concept" and "operationalization").    
 Once we have concepts and operationalizations for each variable, we can 
proceed to assigning mathematical values for each possible category on every 
variable.  For example, if we conceptualize power as money and operationalize 
military power in terms of the defense budget, then we need categories for each 
possible outcome.  In this case that would likely mean the amount of money 
(probably in U. S. dollars) spent by each nation over some specified period of time 
(probably annually).  Perhaps, we should have conceptualized power differently.  For 
example, if economic power is part of "defense" (or "offense"!), then perhaps the 
value of the gross national product would be a better indicator of "power" than 
military spending.  While critical, the answers to such questions are often unique to a 
particular topic.  Our consideration here is to assign mathematical values of 
outcomes on a particular variable.    
 There are four different "levels" of measurement.  In the presentation that 
follows, each succeeding "level" retains all of the desirable properties of the 
preceding "level(s)," but adds some useful properties not contained in the preceding 
"level(s)."  The weakest (i.e., "lowest") level of measurement is called nominal 
measurement.  A nominal measure classifies each possible outcome. For example, 
the dependent variable in international relations studies is frequently whether or not 
war occurred.  Let us say we scored "peace" as zero and "war" as one.  This would 
be an example of a nominal level measure.   Each outcome (peace or war) is mutually 
exclusive (i.e., can be only one category).   Thus, peace can not be classified as war 
and vice versa.   Furthermore, every outcome has a category.  Thus, the only 
possible outcomes are peace or war.  Hence, our measure is collectively exhaustive. 
 When a variable has only two categories of responses (e.g., peace or war), it is 
termed a "dummy" variable.  Occasionally, we will have a nominal level measure with 
more than two categories.  For example, suppose we are studying voter attitudes on 
foreign policy (the dependent variable), one of our independent variables might be 
the respondent's race.  Race would obviously have many more than two categories.  
Additionally, there is no inherent ordering to the categories.  The coding would be 
entirely arbitrary.  For example, would it make any more sense to code Asian-



American as zero, White as one, African-American as two than White as zero, Asian-
American as one and African-American as two.  No!!  Thus race is inherently a 
nominal level variable.  
 The ability to rank (i.e., order) categories of responses on a variable is a 
feature of the second level of measurement, ordinal level measurement.  For 
example, in a study of the foreign policy attitudes of voters (the dependent variable), 
political party affiliation of the voter might be a logical independent variable.  Political 
party affiliation is often measured by what is termed a Likert scale (named for 
psychologist Rene Likert).  Such a scale of partisan affiliation could be formulated as 
follows: (1) strong Democrat, (2) weak Democrat, (3) Independent, (4) weak 
Republican, (5) strong Republican.  The preceding scale has an underlying order 
(hence "ordinal") or continuum.  The continuum might be thought of as being from 
the most Democratic (category #1) to the least Democratic (category #5).  Thus, a 
strong Republican is the least likely to support a Democratic candidate.  
Alternatively, a strong Democrat is the "most" Democratic orientation.  Ordinal 
measures add the ability to rank (or "order") to the mutually exclusive and 
collectively exhaustive traits of nominal level measurement.  While such an 
"advance" is useful, we do not know the difference between the categories.  For 
example, is the difference between a strong Democrat and a weak Democrat the 
same as between a weak Democrat  and an Independent?  We have no way of 
knowing.  
 The third level of measurement, interval level measurement, retains the 
mutually exclusive and collectively exhaustive properties of nominal level 
measurement, and the rank (or order) capabilities of ordinal level measurement.  
However, interval level measures also contain an equal mathematical difference 
between categories.  For example, supposing a political scientist were trying to 
explain the likelihood of someone voting.  Weather might be a useful predictor 
variable.  While some conceptualizations of weather would be nominal (e.g., it either 
rained or it did not), temperature would be an interval level measure.  Temperature is 
an interval level measure because there is a constant unit of measure (a degree).  
Thus, the difference between 39 and 40 degrees is the same as the difference 
between 70 and 71 degrees.  This equal unit of measure is lacking in ordinal level 
measures.   
 A measure that has all the properties of an interval level measure (e.g., rank 
ordering and equal mathematical difference between categories) and has the added 
property that a score of zero indicates the absence of the phenomena being 
measured, is called a ratio level measure.  For example, since a temperature of zero 
degrees does not indicate the absence of temperature (i.e., a temperature of zero 
degrees does not mean that there is no temperature but rather a very cold 
temperature), temperature is not a ratio level measure (just keep reading).  However, 
if we measure income by dollars, a score of zero does indicate the absence of money 
(i.e., no dollars).  Thus, a score of zero dollars indicates the complete absence of 
dollars.  For this reason, income measured by dollars is a ratio level measure 
whereas temperature is an interval level measure (the next paragraph will make it 
clearer). 
 



 Ratio level measures are even more useful than interval level measures 
because, as the name implies, we can form ratios.  For example, we can say that 
someone with an income of $40,000 has twice as much income as someone with an 
income of $20,000 (i.e., a "ratio" of 2 dollars to 1 dollar).  The reason we can say this 
is that a score of zero implies the absence of money (i.e., no money).  However, since 
a temperature of zero degrees does not mean the absence of temperature we can not 
say that a temperature of 70 degrees is twice as high (or as warm) as a temperature 
of 35 degrees. 
 While ratio level measures are quite common in political science, interval level 
measures are relatively rare.  Political scientists often measure variables in either 
percentages (e.g., percentage of times a nation resolves its' disputes with other 
nations by peaceful means - where zero indicates no conflict was resolved 
peacefully) or other scales in which zero indicates the absence of the phenomena 
(e.g., a person with zero years of education indicates they have no formal schooling).  
 A basic rule of statistical analysis is that any statistical technique usable with 
a lower level of measurement can be used with a higher level of measurement, but 
not the reverse.  For example, if a statistical technique is acceptable for use with 
nominal level measurement, then it can be also be used with ordinal, interval or ratio 
level measures.  However, if a statistical technique requires an interval level of 
measurement, then it can not be used with nominal or ordinal level measures.   
 While the difference between each level of measurement is important, the 
primary distinction is between the interval and ordinal levels.  Thus, we may usefully 
think of measures as either interval (i.e., interval or ratio) or sub-interval (i.e., nominal 
or ordinal).  As you will read in future assignments, the statistical techniques that 
require at least an interval level of measurement are much more desirable than those 
that require only nominal or ordinal levels of measurement.  The increased precision 
that interval or ratio level measurement provides is very useful. 
Not surprisingly, researchers have tried using techniques designed for interval level 
data with ordinal level data.  This raises an important question: How serious are the 
consequences of treating ordinal level data as interval level data?   As is often the 
case, the seriousness of the consequences differ depending upon the gravity of the 
violation.  A good rule in this regard is: The more categories of responses and the 
more uniform the distribution of responses, the less serious the consequences of 
violating the interval assumption.  For example, it would be preferable to have five 
categories of responses (e.g., strong Democrat, weak Democrat, Independent, weak 
Republican, strong Republican) as opposed to three categories of responses (e.g., 
Democrat, Independent, Republican).  We can further minimize the severity of 
violating the interval assumption by having an approximately uniform distribution of 
responses.  For example, with five categories of responses it would be desirable to 
have each category contain approximately 20% of the responses.  Thus, if 50% of our 
sample selected response "A" but only 5% selected response "E" we could 
potentially have serious problems in treating ordinal data as interval data.  However, 
if we have several categories of responses and a relatively uniform distribution of 
responses, it appears that we can relax the interval assumption without grave 
consequences (Herbert Asher, Causal Modeling, second edition, pp. 37, 90).  In such 
situations, the advantages of interval level techniques probably outweigh the 



consequences of violating the interval assumption.    
 Two important considerations in evaluating a measure of a variable are 
validity and reliability.  Validity assesses how accurately we are measuring what we 
claim to be measuring.  For example, if our measure of the balance of power says 
that two nations have the same degree of power, is this really true?  A second, and 
related concept, is reliability.   A reliable measure is one which, if applied time after 
time, will yield the same results (assuming no change in the level, or score, on a 
particular variable).  For example, a reliable measure of unemployment will report the 
same incidence of unemployment in 2007 as in 2008 if indeed unemployment was the 
same in those two years.      
 It is useful to be able to distinguish between validity and reliability.  Whereas a 
valid measure is always reliable, a reliable measure may not always be valid.  For 
example, a gas gauge scale that consistently reports that your car has three more 
gallons of gas than it actually does is reliable, but not valid.  Your car always has 
three less gallons of gas than the gauge suggests.  However, since the gas gauge 
always reports your car as having three more gallons of gas than it actually does, the 
gauge is reliable.    
 
 Generalizing Our Results 
 
 As mentioned previously (pages 2 - 5), one of the tenets of the scientific 
method is to try and generalize our results.  Thus, is what occurs in a city similar to 
what occurs in a state?  At this point it would be useful to discuss what is termed the 
"unit of analysis."   The "unit of analysis" is what we collect data on.  For example, if 
we survey individual voters the "unit of analysis" is the individual.  On the other 
hand, if we are using the unemployment rate for the entire United States, the nation is 
the "unit of analysis."  Suppose we are interested in explaining variation in statewide 
voter turnout rates.  As literate individuals are more likely to read political 
information (and hence be more political "involved"), a reasonable hypothesis might 
be that literacy (the independent variable) and voter turnout rates (the dependent 
variable) are "positively" associated.  Thus, as literacy increases, voter turnout rates 
would be expected to increase.  Suppose we have the following statewide data on 
the percentage of adults who are literate in the state and the percentage of the 
registered voters who voted in the last election: 
 
 State  Percent Literate Percent Voted 
 
 California  90%                       90% 
 
 Kansas            70%                       70% 
 
 While tempting, you should not interpret the above data to conclusively 
support a hypothesis that the more literate an individual is, the more likely they are to 
vote.  For example, the 90% "voted" figure for California could have occurred by 
having 100% of the 10% illiterate in California vote and only approximately 80% of the 
90% of adult Californians who are literate vote.   In order to infer to the behavior of 



individuals the data should be collected on individuals.  This would mean that 
individuals were surveyed in both of the above states and we knew whether or not 
each individual was literate and whether that same individual voted.  The above data 
are statewide.   Inferring from one "unit of analysis" (here statewide) to another "unit 
of analysis" (here individuals) is called the ecological fallacy.   
 Make sure you do not confuse the "unit of analysis" with other concepts 
previously discussed.  For example, do not confuse the "unit of analysis" with the 
"level of measurement."  There is no necessary relationship.  We could collect 
nominal level data on either an individual, a state, or a nation.   Furthermore, do not 
confuse the "unit of analysis" with either a "variable" or the "number of 
observations".  If we are collecting data on the education and political philosophy of 
100 individuals, there is one "unit of analysis" (the individual), two "variables" (the 
individual's level of education and their political philosophy) and 100 "observations" 
(100 scores on each of the two variables).  Moreover, do not confuse the "unit of 
analysis" with the subject of the study.  The subject of the study might be the impact 
of education (the independent variable) on political philosophy (the dependent 
variable).  The "unit of analysis" is still the individual because the data are collected 
on individuals. Finally, there is no relationship between the "unit of analysis" and the 
type of research design the researcher uses.  Regardless of whether the researcher 
uses an experimental or a non-experimental research design, there is always a "unit 
of analysis."  In the above example, if the research could set the level of an 
individual's education, they would be using an experimental research design.  If the 
researcher could not set the level of an individual's education, they would be using a 
non-experimental research design. In either event, the individual is still the unit of 
analysis.   Since it is highly unlikely a researcher would be able to either add or 
subtract years of education from an individual, such a study would invariably use a 
non-experimental research design. 
 On quizzes I often ask people to write a hypothesis.  Do not write something 
such as: liberal senators do not support the rich.  If you only include "liberal 
senators," then we have a constant instead of a variable because all the senators you 
studied would be liberals (just keep reading).  Remember that in order to be a 
variable, a concept (such as political philosophy) must be able to assume more than 
one value or score (such as: liberal or conservative - two different values or scores).  
Thus, a better formulation would be: liberal senators are less supportive of wealthy 
taxpayers than conservative senators.  The use of "less" (or "more") conveys the 
notion of probability.  While a liberal senator may support wealthy taxpayers, they 
are less likely to support them as frequently as conservative senators.  Better still, 
think in terms of a continuum (or gradation) of scores.  Thus, all liberals are not 
equally liberal just as all conservatives are not equally conservative.  Therefore, a 
better phrasing of the above hypothesis would be: the more liberal the senator, the 
less supportive they are of wealthy taxpayers.  The degree of liberalism of the 
senator is the independent variable while the senator's degree of support for wealthy 
taxpayers is the dependent variable.  This phrasing allows for multiple categories of 
both liberalism (a senator could be very liberal, somewhat liberal, or not very liberal - 
i.e., rather conservative, etc.) and support for wealthy taxpayers (much support, 
some support or perhaps no support). 



  
 Descriptive Statistics 
 
 The purpose of this section is to introduce you to descriptive statistics.   While 
a quiz on this material may involve some calculation, you do not need to memorize 
any formulas or bring a calculator to class.   Do not panic!  The small amount of math 
that is involved is explained step by step.   Honestly, if you can add "5" and "3" you 
should have little trouble. 
 The purpose of descriptive statistics is to summarize and illuminate some 
important characteristics of the data.  For example, suppose you listen to a 
Presidential debate and hear several candidates discuss tax rates.   Perhaps one of 
the candidates mentions tax rates in both the United States and various foreign 
countries. Perhaps the discussion sparks an interest on your part.  So, you decide to 
assess tax rates in the approximately 160 (or more) nations of the world.  What is the 
average tax rate of all nations of the world?  How much variation (difference) is there 
in tax rates among nations of the world?  These are the types of questions that 
descriptive statistics seek to answer.  So the ensuing discussion will make more 
sense, let me mention that a nation's annual gross national product (GNP) is the total 
value of goods (e.g., cars, houses, etc.) and services (e.g., teachers' salaries, nurses' 
salaries, etc.) produced in that nation in a particular year.  Descriptive statistics can 
summarize the data in that they would allow us to make a statement such as the 
following: In 1995, taxes represented approximately 35% of the value of the gross 
national product for the average nation.  This certainly conveys information in a more 
useful form than would 160 slips of paper each containing the percentage of the 
gross national product represented by taxes for a different nation.  Thus, we have 
summarized the data.  This becomes even more imperative with larger data sets 
(e.g., 3000 respondents to a national opinion poll).     
 A first step in uncovering some salient characteristics of our data is to assess 
how many and what proportion of the scores are between two points.  For example, 
how many nations have taxes equal to between 20%-29% of their gross national 
product?  Additionally, this number of nations is what proportion of the total number 
of nations?  A frequency distribution is a method of helping us answer such 
questions.  To construct a frequency distribution of national tax rates for 160 nations 
in the year 2008, we would need to divide the total dollar amount of taxes collected in 
a nation in 2008, by the dollar value of the gross national product in the same year for 
the same nation.  For example, if all governments in the U.S. collected one trillion 
dollars in taxes in 2008, and the value of the U.S. gross national product was three 
trillion dollars in 2008, the tax rate for the U.S. in 2008, would be .33 (1 trillion dollars / 
3 trillion dollars = 1/3 = .33).  Since .33 is a proportion, we need to multiply it by 100 in 
order to obtain a percentage (percentage means "per hundred").  As (.33)(100) = 33, 
this would mean that in 2008 taxes in the U.S. were equal to 33% of our gross 
national product.  Using this same procedure for the additional 159 nations might 
produce a frequency distribution as follows (if the table on page 15 does not make 
sense, just keep reading - there is a discussion of the table immediately after the 
table appears): 
 



 
 Table 1 
 Frequency Distribution of International Tax Rates 
 (Hypothetical Data) 
 
 National Taxes               
 as a Percentage              Percentage  Number of  
 of National GNP  of Nations  Nations 
 
 70% or more                               0%                             0 
 
 60 - 69                                        10                              16 
 
 50 - 59                                        15                              24 
 
 40 - 49                                        40                              64 
 
 30 - 39                                        31                              50 
 
 20 - 29                                          4                                6 
 
             0 - 19                                           0                                0 
                                                             100%                          160 
 
 There are several important points to remember in constructing a frequency 
distribution.   First, have a descriptive title.  The title should convey to the reader 
what information the table contains.  Second, use appropriately sized categories.  
For example, suppose the above table had only two categories, less than 30 percent 
and 30 percent or greater.  If so, 96% of the nations would have been in the same 
category (30 percent or greater).  As the data in Table 1 show, such a categorization 
scheme would have concealed a large amount of variation.  Notice the percentage of 
nations in each category above 39 percent.  All this information would have been 
concealed if one category was used for all nations with taxes equal to 30 percent, or 
more, of the gross national product.  Third, always present both the percentage 
(column 2) and the frequency (column 3).  Percentages "standardize" the data (just 
keep reading - it will be clear shortly).  For example, suppose that we wanted to 
compare how likely a nation was to have taxes consume between 50% and 59% of 
that nation's gross national product in 2008 and in 1958.   According to the table 
above, in 2008 there were 24 nations out of the total of 160 nations, or 15%, (24 is 
15% of 160) that fit this criteria.  Suppose we found that in 1958, 24 nations out of the 
total of 120 nations, or 20%, (24 is 20% of 120) fit this same criteria.   While the 
number of nations, 24, is the same in both 2008 and 1958, the percentage of nations 
in which taxes consumed between 50% and 59% of the gross nation product was 
lower in 2008 than in 1958 (because 15% is lower than 20%).  If we did not adjust for 
the different number of nations in the two time periods (160 vs. 120), we would not 
have known this.  Expressing the number 24 as a percentage placed both 2008 and 



1958 on a common measuring scale which then revealed a difference between the 
two years that would not have been apparent had we just examined the number of 
nations in the 50% to 59% category in both years.  As the reader may want to 
reorganize the data, it is also important to show the frequency (i.e., number of 
nations) in each category. 
 
 Measures of Central Tendency and Measures of Dispersion 
 
 While frequency distributions are important, they do not convey all the salient 
characteristics of a variable.  Two additional questions that would be useful to 
answer are: (1) What is the average score; and (2) How representative is the average 
score of all the scores?  
 We often think in terms of an "average."  You may assess how well you scored 
on a test by comparing your score with "the average."  There are several different 
measures of "the average."  The statistics pertaining to the average are termed 
"measures of central tendency."  There are three commonly used measures of 
central tendency.  The appropriate measure depends upon three factors: (1) the 
question you want to answer; (2) the level of measurement of your data; and (3) the 
distribution of the scores.   Remember from the notes on the level of measurement 
that while a nominal level measure categorizes the data (e.g., pear, oak and elm are 
three categories of trees), it neither orders the data (e.g., are pear trees "higher" than 
oak trees?) nor provides an equal unit of measure between categories (e.g., is the 
difference between pear and oak the same as between oak and elm?).   Given these 
limitations, the only method of measuring the average for a nominal level measure is 
to see which category occurs the most frequently.  Such a measure is called "the 
mode."  For example, the mode for the following scores: 2, 3, 4, 5, 5, and 6  is 5.  If 
two different scores are equally numerous then we have what is termed a "bi-modal" 
distribution (just keep reading - the next sentence will make it clear).  For example, 
suppose we had the following scores: 1, 1, 2, 3, 4, 5, 5.   Since "1" and "5" both 
appear twice and no other score appears more than once, both "1" and "5" are 
modes.  As there are two modes, the scores are "bi-modal." 
 If our data are ordinal (on "ordinal" see page 11), in addition to the mode, we 
may also employ a second measure of central tendency, the median.  The median is 
the number that divides the distribution into two equal parts.  For the following 25 
scores: 0, 1, 1, 2, 2, 2, 2, 3, 3, 3, 4, 4, 5, 6, 6, 6, 6, 6, 7, 8, 9, 75, 100, 125 and 300 the 
median is the "middle" score (i.e., if 25 scores then the 13th score from the left) 
which is 5.  Note also that the mode for this data is 6.  If we had an even number of 
scores the median would be the mid-point between the two middle scores.  For 
example, with ten scores the median would be midway between the fifth and sixth 
scores.  
 Look again at the 25 scores that we just used in the example of the median.  
Notice that the last four scores (75, 100, 125 and 300) are much higher than the other 
scores.  However, if a score is the same (or higher) than the middle score, the median 
is unaffected (e.g., if the last four scores were 14, 15, 16 and 17 the median would 
still be 5).  It is this feature of the median that makes it usable with ordinal level data. 
Remember that ordinal level data tell the rank, but not the precise numerical 



difference between the scores.  Thus, if we just want to select the middle score, all 
we have to know is the ranking of the scores, not the degree of difference between 
the scores.  However, if we have interval or ratio level data (see pp. 11-12), we also 
know the numerical difference between the categories.  It would seem natural to 
develop a measure of the average that took account of the numerical differences 
between the scores.   This is the idea behind the mean.  The mean of a group of 
scores is the total of the scores divided by the number of scores.  For example, the 
mean of the following scores: 10, 20 and 60 is 30 (because 10 + 20 + 60 = 90 and 90/3 
= 30). Hence, the mean tells us the average per score. 
 In the calculation of the median, we used the 25 scores listed above.  The 
mean of these 25 scores is 27.44 (because if you add the 25 scores above together 
they total 686 and 686/25 = 27.44).  Obviously, the median (5) is quite different than 
the mean (27.44) for this data.   This great difference between the median and the 
mean occurs because the highest four scores are so much greater than the other 21 
scores.  While the size of the numerical difference between scores has no effect on 
the median, it has a great impact on the mean.  Remember that one of the criteria for 
choosing a measure of central tendency is the distribution of the data.  Because the 
extreme scores distort the mean value of the 25 scores listed on the previous page, I 
would recommend using the median as the measure of central tendency for the 
above data set.  However, note that if we had not had interval or ratio level data, we 
could not have calculated the mean.  Hence, we would have had to use either the 
median or the mode as our measure of central tendency.  Additionally, if you wanted 
to know which score occurred the most frequently, you would use the mode as your 
measure of central tendency.   
 By providing a notion of "the average," measures of central tendency reveal 
important characteristics of the data.   However, a measure of central tendency does 
not tell us how representative the average is of all the scores in the distribution.  For 
example, if you were a professor and found that the mean score on an exam was 50, I 
think you would want to know if the mean of 50 occurred because nearly all students 
scored approximately 50, or because perhaps half the students scored 0 and the 
other half scored 100.  In both circumstances the mean would be the same, but the 
ramifications for how you taught the course would be entirely different.   This 
example illustrates the need for what are termed "measures of dispersion."  The 
purpose of measures of dispersion is to assess how representative the average is of 
all the scores in the distribution. 
 The simplest measure of dispersion is called "the range."  The range is the 
difference between the highest and lowest score.  As the range implies order, we 
would need at least an ordinal level of measure to compute the range.  While the 
range is simple, it does not convey as much information as we might like.  For 
example, suppose we return the glorious 1980s when American life was good, pure 
and Donald Trump was in financial ascendence.   Relaxing in the plush surroundings 
of Trump Tower, I joyously calculate Sir Donald's income for the current year.  When I 
compare his income to that for each other American family, I discover that not only is 
Trump's income higher than that for any other American family, but that no other 
American family is within $1,000,000 of Trump's income.  If we were to use the range 
as a measure of dispersion, we would simply take the difference between Trump's 



income and the lowest family income.  However, by using only two scores we have 
masked the important information that Trump's income was by far the highest.  Thus, 
the range is insensitive to any scores except the two most extreme (highest and 
lowest).  We can minimize this problem somewhat by using several additional data 
points.  For example, in addition to the highest and lowest scores we could include 
the score wherein 1/4 of the families were above and wherein 1/4 of the families were 
below.  Such a measure is referred to as the "interquartile" range.   
 While the interquartile range conveys more information than the range, it 
would be desirable to have a measure of dispersion based upon all the scores in the 
distribution.  Intuitively, we might think that we could measure dispersion by 
subtracting the mean from each score.  The difference between a single score and 
the mean would indicate the amount of "deviation," or "dispersion" of that particular 
score from the mean.  If we summed (added) each of these "dispersions" we would 
have the total amount of dispersion present in our data.   We could then divide this 
total by the number of observations in order to obtain a typical deviation (i.e., the 
deviation per score).  While there is a mathematical "problem" in this method, the 
procedure we have just outlined is the basis of the approach we will ultimately use.   
 The mathematical "problem" with the approach we just formulated is that it 
must result in an answer of zero.  This is because one of the properties of the mean 
is that the total amount of "distance" below the mean must be equal to the total 
amount of "distance" above the mean.  For example, the mean of the following 
scores: 4, 6, and 8 is 6 (because 4 + 6 + 8 = 18 and 18/3 = 6).  The "average" of the 
deviations of these same scores would be "0" [because 4 - 6 = -2, 6 - 6 = 0,  8 - 6 = 2; 
adding these deviations  equals 0 (i.e., -2 + 0 + 2 = 0) and then dividing this total by 
the number of scores yields "0" (i.e., 0/3 = 0)].  The value of the "positive" deviations 
from the mean (i.e., scores higher than the mean) equals the value of the "negative" 
deviations from the mean (i.e., scores lower than the mean) and thus the "total" 
deviation from the mean must equal zero.  Therefore, we are left with the impression 
that there is no deviation (i.e., no variation) in our data.  Thus, we would mistakenly 
conclude that the mean occurred because every score was the same.   
 This problem can be rectified by taking the "absolute" value of each deviation 
from the mean.  Hence, a deviation of -2 would be treated as a deviation of 2.  As we 
would be adding a series of positive numbers, the cancellation problem I just 
discussed would not occur (i.e., in the example above remember that -2 + 0 + 2 = 0 
and hence our deviation measure ended up as 0/3 = 0; taking "absolute" values 
would have instead produced a typical deviation of 1.33 because 2 + 0 + 2 = 4 and 4/3 
= 1.33)  This revised procedure (i.e., using "absolute" values) is called the average 
deviation.  While such a measure tells us the average amount of deviation from the 
mean for a typical score, the result is still not as useful as we might prefer.  For 
example, suppose we calculated the average deviation and found that it was 5.7.  
What statement(s) could we make?  We could say that the typical score deviated 5.7 
units (in whatever units the variable was measured, dollars, percentage points, etc.) 
from the mean.   
 We could further amplify the preceding approach by taking the average 
deviation as a percentage of the mean (even if you are confused, just keep reading 
through the end of this paragraph). Thus, an average deviation of 5.7 would seem 



small if the mean were 1,000, but large if the mean were 10.  Therefore, an obvious 
approach would be to divide the average deviation by the mean (just keep reading).  
This would yield a "proportion" which we could then multiply by 100 in order to 
obtain a "percentage" (just keep reading).  For example, an average deviation of 5.7 
is 57% of a mean of 10 (5.7/10 = .57 and (.57)(100) = 57).  However, an average 
deviation of 5.7 is only .57% (approximately 1/2 of 1%) of a mean of 1000 (5.7/1000 = 
.0057 and (.0057)(100) = .57).  If the average deviation is 57% of the mean, it tells us 
that the mean was achieved by many scores being quite far from the mean (e.g., the 
mean of 0 and 10 is 5 because (0 + 10)/2 = 10/2 = 5 but neither 0 nor 10 is very close 
to 5).  On the other hand, if the average deviation is only 1/2 of 1% of the mean, this 
tells us that virtually all the scores are quite close to the mean.     
 While the aforementioned procedure is a definite improvement over the range, 
we can still do better.  A critical question to ask with the result from any statistic is: 
How can you interpret the answer?  In the last paragraph I outlined an approach to  
interpreting the average deviation.  However, we could improve upon my approach if, 
in addition to taking the average deviation as a percentage of the mean, we could 
also compare the average deviation to a known distributional formula.  For example, 
suppose the mean of a group of scores was 50 and the average deviation was 5.  
Using my approach we could say that the average deviation was 10% of the mean 
[5/50 = .10 and (.10)(100) = 10].  This would suggest that the mean was achieved by 
most scores falling pretty close to the mean.  Put differently, when we consider the 
average deviation relative to the mean, dispersion seems low.  However, it would be 
even more informative to give a percentage distribution of the scores.  For example, 
it would be desirable to be able to say that approximately 68% of the scores were 
within one average deviation of the mean.  Given our results (mean = 50, average 
deviation = 5) this would mean that approximately 68% of the scores would fall 
between 45 and 55.  Unfortunately, we can not make such a statement with the 
average deviation.  In order to obtain a percentage distribution of the scores we need 
to calculate the standard deviation.  
 While our purpose is to illustrate the calculation and use of the standard 
deviation, this is a good point to introduce some statistical symbols and 
mathematical procedures.  Do not panic!  While a quiz on this material may involve 
some calculation, you do not need to memorize any formulas or bring a calculator to 
class. I will provide any formulas which are needed on the quiz.  You only must know 
how to work the formulas on pages 21-24.  Just follow how I work the computations 
on pages 21-24 (i.e., how I calculate the various answers).  Finally, you will not have 
to calculate a square root.  The quizzes on this material will have you working largely 
with single digit numbers.  For example, you might have to subtract 3 from 5 (i.e., 5 - 
3 = 2).  Wasn't that difficult?  If we are feeling "adventurous" later on we might 
actually try multiplying 2 times 2!!  Wow!!!  Do you really need a calculator to do 
these computations?  I hope not!  When people have trouble on a computational quiz 
it is almost always because they do not know the order of mathematical operations.  
For example, do you add and then multiply or multiply and then add?  A calculator 
can not help you with the order of mathematical operations.  The calculator assumes 
you know the order of operations.  That is why a calculator is of such little value on 
the type quiz you will take.   



 
 The standard deviation is undoubtedly the most often used measure of 
dispersion in political science.  As just mentioned, the standard deviation will permit 
us to make what I will term "percentage distribution" statements.  Just keep reading!! 
For example, let us say that you are studying international relations. 
International relations scholars have often quantitatively tested interesting models 
concerning the factors (i.e., independent variables) that explain why some nations 
are more likely to resolve their conflicts peacefully than other nations.  The 
dependent variable in this type of study might be the percentage of times a nation 
resolves its disputes peacefully.  Peaceful resolution would mean that a dispute was 
resolved without violence.  Typically, international relations scholars pretty much 
agree on what  constitutes a "dispute."  So, through historical records we construct 
the number of disputes that each nation has been involved in over the last 100 years. 
 While the name and boundaries of many nations have changed over the past 100 
years, we could still obtain data for a large number of nations.   Using the historical 
record, (continued on the next page)   
 

 
NOTE: Odd page breaks will occur when there are formulas.  This material was 

originally written in Word Perfect and the equations do not automatically transfer 
from one word processing package to another.  I don’t know how to use equation 
“boxes” in Microsoft Word.  Additionally, in some cases there are drawings that I 
paid to have made that I want to transfer to this edition of the material.  So, just be 
prepared for an occasional page fragment!   
 
 
 
 



 



 



 



 



 



 



 



 
 
 
 



Cross Tabulation
 
 Probably the simplest method of assessing the association between two, or 
more, variables (a basic part of hypothesis testing) is cross tabulation.  Two 
examples of cross tabulation appear ahead.  In the first example (Tables 1 and 2) we 
will be assessing whether a person's location (whether they live by the sea coast or 
live inland - the independent variable) is related to their degree of tolerance (i.e., how 
supportive an individual is of permitting people to express non-traditional opinions, 
lifestyles, etc., - the dependent variable - "high" tolerance means much willingness to 
tolerate such differences).  Please note that the common convention in displaying 
cross tabulation tables is to percentage by the independent variable [e.g., in the 
tables below notice that the column percentages total 100% - for example, 45% + 55% 
= 100% - this is because the categories of the independent variable are going across 
the page - just keep reading] and to include the number of cases (observations) in 
parentheses. 
 
 Table 1 
 Tolerance by Location 
 
   Tolerance       Coastal       Inland 
 
   High      45%                    19% 
       (180)         (97) 
 
   Low      55%          81% 
       (220)       (403) 
                                     _______________________________________ 
        100%        100% 
      (400)       (500) 
 
  Each possible combination of responses in Table 1 is called a "cell" (just keep 
reading).  For example, all those respondents who both live in a coastal area and are 
"high" in tolerance are placed in the same "cell."  The number in the parentheses for 
this "cell" is 180.  This means that there are 180 respondents who both live in a 
coastal area and are "high" in tolerance.  Additionally, 45% of those living in a 
coastal area are "high" in tolerance (180 is 45% of 400).  Table 1 contains four cells 
(i.e., coastal/high tolerance, coastal/low tolerance, inland/high tolerance and 
inland/low tolerance).   
 It seems that living in a coastal area and tolerance are associated (i.e., coastal 
residents are more tolerant than inland residents - because 45% is greater than 19%). 
However, is location the only influence on tolerance?  If not, we could conclude that 
location influences tolerance when another independent variable is actually 
influencing tolerance.  A second independent variable that could influence tolerance 
is education.  Typically, the more educated one is, the more likely they are to be 
exposed to, and respect, the right of people to differ (whether by appearance, 
lifestyle or beliefs).  Thus, let us "control" (i.e., remove the effect) of education and 



see if location and tolerance are still related (how this is done is explained on the 
next page).  Since we want to see if location is related to tolerance, we will remove 
the influence of education on tolerance (i.e., "control" for education) and see if 
location and tolerance are still related.  To see the effect of education on tolerance, 
we would "control" for location and see if education is related to tolerance.  
 
 Table 2 
                             Tolerance by 
 Location Controlling for Education 
         
Tolerance    College Graduates    High School Graduates  
         Coastal           Inland                 Coastal        Inland 
 
High            57%        57%                    10%     10%    
          (170)                      (57)                               (10)     (40) 
 
Low            43%                  43%          90%     90% 
             (130)                 (43)                               (90)   (360) 
___________________________________________________________________ 
          100%         100%                  100%   100% 
         (300)               (100)                                       (100)  (400) 
 
 Notice that within each category of education the percentage of those who are 
"high" on tolerance is the same (57% vs. 57% and 10% vs. 10% - just keep reading).  
Thus, among college graduates 57% are "high" in tolerance regardless of whether 
they live by the sea coast or live inland.  Furthermore, among high school graduates 
only 10% are "high" in tolerance regardless of whether they live by the sea coast or 
live inland.  Thus, within each category of education, location does not matter (i.e., 
within each category of education, there is no difference between those living by the 
sea coast and those living inland).  The original relationship (i.e., Table 1 on page 30) 
occurred because most college graduates live in coastal areas (300 of the 400 
college graduates live in coastal areas).  Thus, when we simultaneously examine the 
effects of both education and location on tolerance, we find that education is related 
to tolerance (i.e., 57% of college graduates are high in tolerance while only 10% of 
high school graduates are high in tolerance), while location is not.  Alternatively, we 
can say that the relationship between location and tolerance in Table 1 on page 30 is 
"spurious" (i.e., existed before the "control" variable - education - was included but 
disappeared once the "control" variable was accounted for).   
 Do not confuse "controlling" for an independent variable with "setting the 
level" of an independent variable.  In a nonexperimental research design, the 
researcher cannot set the levels (i.e., scores) of the independent variables (see 
pages 5-7). We are using a nonexperimental research design in Table 2 above 
because we cannot either increase or decrease any respondent's level of education.  
For example, we cannot add four years of college to a high school graduate and then 
see if that person's level of tolerance changes.  However, even though we cannot set 
(or change) the level of each person's education, we can "control" for education 
because we can examine various levels of education where each person has the 
same amount of education (e.g., each high school graduate has the same amount of 



education) and then see if among those who have this same amount (or level) of 
education their location (coastal or inland) is related to their degree of tolerance.   
Thus, just because we cannot set the level of an independent variable (e.g., the 
person's education or location), we can still control for a particular independent 
variable (as we just did with education). 
 Tables 1 and 2 were inspired by pages 438-439 of Research Methods in the 
Social Sciences, third edition, by David Nachmias and Cava Nachmias. 
 Our second example of cross tabulation concerns the effect of gender (the 
independent variable) on the speed with which one is promoted at work (the 
dependent variable).  We are trying to assess whether gender discrimination is 
occurring in the workplace.   
 
 Table 3 
 Year of Promotion by Gender 
 
Year of Promotion       Men       Women 
                                                 
  one year                 33%       20% 
 
  after one year       67%                           80%    
__________________________________________________________ 
       100%    100% 
       (148)    (192) 
 
 There would appear to be discrimination by gender.  Men seem to be 
promoted faster than women.  However, as speed of promotion could be affected by 
many factors we would be more certain of gender-based discrimination if we 
"controlled" for these other factors.  Obviously the table would become rather 
unwieldy if we tried to simultaneously control for more than one variable (this is a 
major limitation in using cross tabulation).  If I were a lawyer representing women 
who had either not been promoted, or promoted later than most men, I think I would 
want to control for productivity so that my opposition could not make the case that 
the men who were promoted more rapidly were more "deserving." 
 
 Table 4 
 Year of Promotion by Gender Controlling for Productivity 
 
Year of Promotion  High Productivity  Low Productivity 
    Men    Women                    Men      Women                      
  one year                          37%         30%                        28%          8% 
 
 
  after one year   63%       70%               72%       92% 
_________________________________________________________________ 
 
            100%      100%             100%     100% 
             (88)     (104)             (60)     (88) 
 



 Regardless of productivity men are promoted faster than women (37% is 
greater than 30% while 28% is greater than 8%).  However, productivity is also related 
to speed of promotion (highly productive men are promoted faster than non-highly 
productive men - 37% is greater than 28% - the same pattern holds for women).  
Thus, unlike the previous example, the initial relationship between the independent 
and dependent variables holds after the control variable (i.e., productivity) is 
introduced.  Furthermore, as the gap in the first year promotion rate is higher 
between highly productive and non-highly productive women (30% -  8% = 22%) than 
between highly productive and non-highly productive men (37% - 28% = 9%), 
productivity seems to matter more for women than men.  The results say that you 
have to work harder to be promoted if you are a women.  This appears to be a clear 
case of gender-based discrimination.    
 Tables 3 and 4 above were inspired by pages 146-156 and pages 170-171 of 
Quantitative Methods for Public Administration, 2

nd
 edition, by Susan Welch and 

John Comer. 
 
                   Measures of Association 
 
 It is often useful to have a summary statistic to show the association between 
variables.  For example, a score of .19 on a measure of association can summarize 
much of the meaning of a many-celled cross tabulation table.  For this reason, it is 
common for a cross tabulation table to also contain a measure of association.  For 
reasons that will be discussed shortly, regression is by far the dominant analytical 
tool of modern quantitative political science.  However, as you occasionally see 
measures of association in journal articles, you should be familiar with them.  While 
there are many different measures of association, the only ones that you see with 
any frequency in political science are: gamma (symbol: γ), Kendall's taub (symbol: τ 
or taub) and Pearson's Product Moment Correlation (symbol: r).  Pearson's Product 
Moment Correlation is usually referred to as either Pearson's r or just correlation.  In 
the discussion that appears ahead, do not be concerned with "how" measures of 
association (i.e., gamma, Kendall's taub and Pearson's Product Moment Correlation) 
are calculated.  Rather, be concerned with how measures of association are 
interpreted. 
 Suppose you are an international relations scholar and you are trying to see if 
a nation's political system influences its foreign policy.  Specifically, your hypothesis 
is that since nation's with a democratic political structure are more likely than non-
democratic nations to peacefully resolve conflicts within their own nation, they will 
also be more likely to peacefully resolve conflicts with foreign nations.  Let us say 
that we have a data set of 715 international disputes from over the past 100 years.  
For each dispute we have scores for each of the nations involved concerning their 
level of democracy (a 10 point scale from "1" - least democratic, no elected offices 
no  competing political parties, etc. to "10" - most democratic, high percentage of 
government officials are elected, at least two competing political parties, easy voter 
registration laws, etc.) and degree of peacefulness of conflict resolution (e.g., a 6 
point scale from "1" - least peaceful, war is declared to "6" - most peaceful, no war, 
no threats of war, no break in diplomatic relations, etc.).   



 Our hypothesis would be that higher scores on degree of democracy are 
associated with higher scores on degree of peaceful resolution of conflict.  Since 
there are 10 possible scores on degree of democracy and 6 possible scores on 
degree of peacefulness of conflict resolution, a cross tabulation table would have 60 
cells [i.e., there a 60 possible combinations of scores (10 times 6 = 60) on the two 
variables - "1" on democracy and "1" on peaceful resolution of conflict is one 
combination, "1" on democracy and "2" on peaceful resolution of conflict is a 
second combination, etc.].  If you are confused, just look back at page 28.  Didn't 
Table 1 have four cells because each variable had two categories (i.e., 2 times 2 = 4)? 
Yes!  So, the number of cells is equal to the product (multiplication) of the number of 
categories of all the variables.  Thus, if we have 10 categories on degree of 
democracy and 6 categories on the degree of peaceful resolution of conflict, then a 
cross tabulation table with these two variables would have 60 cells [i.e., 10 times 6 = 
(10) (6) = 60]. 
 A cross tabulation table with 60 cells would be extremely cumbersome and 
difficult to interpret.  Some would show this relationship by reducing the number of 
categories of the variables.  For example, we could code scores on democracy as 
either "high"(a score from 7 to 10), "medium" (a score from 4 to 6) or "low" (a score 
from 1 to 3).  This would reduce the number of cells from 60 [(10) (6) = 60] to 18 
[since we now have only 3 categories on democracy and 6 on peacefulness of 
conflict resolution the number of cells is 18, i.e., (3) (6) = 18].  However, reducing the 
number of possible scores on a variable increases measurement error and denies 
the political scientist the knowledge that those extra categories provide.  For 
example, assuming that the democracy scale was well constructed to begin with, 
there is a good reason why a nation was coded as scoring "7" rather than "10."  
However, if we use the "reduced category" approach that I just outlined, both "7" and 
"10" would be in the "high" democracy category.  By treating "7" and "10" as the 
same score (they would both be considered "high" on democracy) we are less 
accurately measuring a potentially important variable.  Thus, we are increasing the 
degree of measurement error.  This is not desirable.  Therefore, let us reject such an 
approach and use the full 10 categories for degree of democracy and 6 categories 
for degree of peaceful resolution of conflict. 
 We are still in the position of having a 60 celled cross tabulation table.  In 
order to present the degree of association between a nation's level of democracy 
and the degree to which they resolve conflict peacefully in a more readily 
interpretable fashion, a political scientist might turn to a measure of association.  For 
reasons I will discuss later, political scientists are increasingly moving away from 
either a cross tabulation table or a measure of association.  But for now, let us 
assume the political scientist opts for a measure of association. While not as useful 
as the approaches we will later study, a measure of association is more desirable in 
our current situation than a 60 celled cross tabulation table. 
 Which measure of association do we use?  The choice of a measure of 
association is largely governed by the level of measurement of the variables we are 
examining (on levels of measurement review pages 11-12).  For example, both 
gamma and Kendall's taub require that our data be at least measured at the ordinal 
level (i.e., either ordinal, interval or ratio, but not nominal because it does not 
possess the "ranking" quality that is necessary here, again, see pages 11-12).  Both 



our variables are probably best thought of as ordinal level measures.  Let us examine 
the democracy variable.  We can rank scores from "lowest" to "highest" on 
democracy.  Therefore, democracy is measured at either the ordinal or interval 
levels.  However, the differences between the categories of democracy are not likely 
to be equal.  For example, is the difference between level "2" and level "3" the same 
as between level "5" and level "6"?  Probably not.  Therefore, the democracy variable 
is probably best classified as an ordinal level measure.  For the same reasons, the 
peaceful resolution of conflict variable is also probably best classified as ordinal.  
Thus, we are trying to see if two ordinal level measures are associated with each 
other.  Since Pearson's r (i.e., Pearson's Product Moment Correlation) assumes that 
variables are either interval or ratio (i.e., that there is an equal interval between 
categories), it should not be used with either nominal or ordinal level data (see pages 
11-12).  However, since both gamma and Kendall's taub are designed for ordinal level 
data, we could use either measure.  Gamma will either be the same, or higher, than 
Kendall's taub.  Typically, the differences are not great.  For example, a score on 
Gamma might be .29 whereas the figure for Kendall's taub might be .22.  While one 
can make a rather convincing case that Kendall's taub is preferable to gamma, 
political scientists are more likely to use gamma.  So, let us select gamma.  Thus, we 
ask the computer to calculate the gamma between level of democracy and degree of 
peaceful resolution of conflict for our 715 observations.  As I previously, do not be 
concerned about the formula and computations the computer uses to calculate 
gamma.  Be concerned with how we interpret gamma.  Suppose the computer tells 
us that gamma is .55.  What would this allow us to say? 
 
  Interpreting Measures of Association 
 
 Gamma, Kendall's taub and Pearson's Product Moment Correlation all show 
both the direction and strength of the association between two variables.  All three 
measures range from +1.0 (strongest positive association) to -1.0 (strongest negative 
association),  with .00 indicating no association.  Since the gamma in this example is 
.55 (and not -.55) we know that there is an association (i.e., the gamma was not .00, 
or something very close to it) and that the association between degree of democracy 
and degree of peaceful resolution of conflict is positive.  Thus, the more democratic 
the nation (i.e., the higher a nation's score on democracy) the more peacefully that 
nation resolves its disputes with foreign nations (i.e., the higher the score on 
peaceful resolution of conflict).  Since we hypothesized a positive relationship, the 
gamma of .55 supports our hypothesis.  
 Be sure not to confuse the direction of the association with the strength of the 
association. For example, a gamma of .55 and -.55 have the same strength, only the 
direction of the relationships differ.  As the above example demonstrates, a positive 
association means that higher scores on one variable are associated with higher 
scores on the other variable.  However, a gamma of -.55 would indicate that higher 
scores on democracy were associated with lower scores on peaceful resolution of 
conflict.   
 While we now know that the relationship between degree of democracy and 
degree of peaceful resolution of disputes is positive, we do not know how "strong" 
this relationship is. In order to interpret the "strength" of the association, we first 



need to discuss random measurement error.  "Random" means that there is no 
pattern.  For example, say that we had not perfectly measured the level of democracy 
of the nations involved in a particular dispute.  In those cases in which the measure 
was not correct, let us say that we almost always overstated the degree of 
democracy (i.e., the score on democracy was invariably higher - closer to 10 -than it 
should have been).  This would be a case of systematic (i.e., non-random) 
measurement error.  Alternatively, if we are as likely to record a nation's score on 
democracy as being too low as too high, we have a case of random measurement 
error.  For this discussion I am going to deal with random measurement error.   
 Random measurement error reduces the association between variables.  
Suppose we had two variables that were measured without error and were perfectly 
associated with each other (e.g., a gamma of 1.0).  If we then introduced random 
measurement error into one of the variables, the association would be weakened 
(e.g., from 1.0 to say .70).  This is why in the necessary strength of association is 
lower for variables measured with a "high" degree of random error than variables 
measured with a "low" degree of random error.  The greater the random 
measurement error the more difficult it is to attain a strong association.   As the 
following diagram indicates, if our variables are measured with a low degree of 
random measurement error, a gamma of .55 between degree of democracy and 
degree of peaceful resolution of conflict would constitute a "strong" positive 
association.  Let me mention that the example I have been using, the relationship 
between a nation's level of democracy and its likelihood of resolving of peacefully 
resolving disputes with foreign nations has been extensively tested by quantitative 
international relations scholars.  In general, their results are consistent with the 
hypothetical results I have used.    
 The degree of democracy measure would probably be best classified as 
having a "low" degree of random measurement error.   By contrast, survey data often 
has a "high" degree of random measurement error.  For example, when we ask 
voters about their political philosophy (e.g., conservative, moderate, liberal, etc.) 
their responses are likely to contain a "high" degree of random measurement error.  
This is because a concept such as "conservatism" has different meanings to 
different individuals.  We can still learn much about voters from asking them about 
their political philosophy, but we need to be aware that such a measure is likely to 
have a "high" degree of random measurement error.  The practical effect of working 
with a variable that has a "high" degree of random measurement error is that it is 
more difficult for us to achieve a "strong" association (e.g., a gamma of .70).  The 
following table provides a guide for interpreting measures of association in relation 
to the degree of random measurement error.       
 
 
 
 
 
 
 



 
 A Standard to Interpret the Strength of Gamma, 
 Kendall's Taub and Pearson's Product Moment Correlation 
 
Variables Containing a High Degree of Random Measurement Error: 
 
plus/minus .01 to plus/minus .15 - weak association 
plus/minus .16 to plus/minus .29 - moderate association 
plus/minus .30 to plus/minus .49 - strong association 
above plus/minus .49   - very strong association 
 
Variables Containing a Low Degree of Random Measurement Error:   
 
plus/minus .01 to plus/minus .25 - weak association 
plus/minus .26 to plus/minus .49 - moderate association 
plus/minus .50 to plus/minus .69 - strong association 
above plus/minus .69                     - very strong association 
 
 
 The Changing Nature of 
 Statistical Analysis in Political Science 
 
 Since the late 1970s there has been a sharp decline in the use of cross 
tabulation and measures of association in both political science and the social 
sciences generally.  This trend has occurred for three primary reasons.   
 First, cross tabulation tables (but not measures of association) almost force 
the researcher to work with either a small number of variables and/or a small number 
of categories per variable (just keep reading).  For example, using just four variables 
(e.g., the dependent variable and three independent variables) with only four 
categories of responses per variable would produce a cross tabulation table 
containing 256 cells (4 x 4 x 4 x 4 = 256).  By contrast, Table 1 on page 30 has only 
four cells.  A table with 256 cells would take several pages to display and would be 
extremely difficult to interpret.  This is why users of cross tabulation typically include 
only one, or two, independent variables.  As you saw on pages 30-32, the 
relationship between one independent variable and the dependent variable can 
change considerably if another independent variables is included. By greatly limiting 
the number of independent variables we can use, cross tabulation is highly likely to 
produce misleading results.   Furthermore, by virtually forcing us to use few 
categories of responses per variable, cross tabulation considerably increases 
measurement error.  In the example on page 30, we measured an individual's 
tolerance as being either "high" or "low."  All those listed as "high" in tolerance 
probably do not have the same degree of tolerance.  More categories of responses 
(e.g., ten categories of responses on tolerance instead of just two) would have 
produced a more valid measure.  Similarly, if one of our variables is a percentage, it 
would have 101 categories of responses (0 plus 1-100).  As 101 categories of 
responses would produce a gargantuan cross tabulation table, users of cross 
tabulation will typically reduce the 101 categories to, say, 3 categories: 0-33, 34-66 



and 67-100.  Such a procedure would put a score of 1 in the same category as a 
score of 33 (i.e., they would both be in the 0-33 category).  However, assuming a valid 
measurement scale, a score of 1 is quite different than a score of 33.  Therefore, the 
practical difficulties of using cross tabulation are highly likely to increase 
measurement error and produce misleading results.    
 Second, even if we use a cross tabulation table with many variables and many 
categories of responses per variable the small number of observations in many of 
the cells make significance testing (your next statistically oriented reading 
assignment) extremely risky (just keep reading).   Suppose our sample contains only 
one conservative female blue collar worker who is also 30 years old, a Democrat and 
has an annual income of over $100,000.   We would have a "cell" with only one 
observation.  This is simply too few observations for reliable analysis.  This is 
analogous to flipping a coin one time and concluding the coin is biased toward 
flipping heads.  We would desire many more flips of a coin before being very 
confident that a coin is biased.  Each time we add another category in a cross 
tabulation table, in effect we reduce the number of observations.  Look again at 
Table 1 on page 28.  There are only 97 respondents who both live in an "inland" area 
and are "high" on tolerance.  In an effort to improve the accuracy of our measures, 
suppose we created additional categories of "inland."  After all, are all "inland" areas 
the same?  Probably not.  Supposing, for example, that we place those living from 5 
to 50 miles from the ocean and being "high" on tolerance in one category, those 
living from 51 to 200 miles from the ocean and being "high" on tolerance in a second 
category and those living more than 200 miles from the ocean and being "high" on 
tolerance in a third category.  From a measurement standpoint, this is an 
improvement upon just lumping all three categories together in one cell (i.e., being 
both "inland" and "high" on tolerance).  Assuming that there are some respondents 
in each of these three new categories, some of the resulting new cells will contain far 
fewer than the 97 respondents who were listed as being both "inland" and "high" on 
tolerance.  The total number of respondents in all three cells would be 97 but each 
cell would have fewer than 97.  For example, maybe there are only 10 respondents 
who both live from 5 to 50 miles from the ocean and are "high" on tolerance.  If we 
continue this process very long, we will end up with cells that contain very few 
respondents.  A low number of respondents in a cell means it is difficult to be very 
confident about the results.  What we need is a method that estimates the 
relationship between variables while preserving the size of our sample.  In the 
current example this would mean holding the sample at 97 and not reducing it 10 
through more categories.         
 Third, neither cross tabulation nor measures of association provide us with a 
measure of the magnitude of the relationship between the variables (just keep 
reading).  For example, a Pearson's Product Moment Correlation of .7 between an 
individual's level of education and their annual (yearly) income indicates that the 
relationship between education and annual income is both "strong" and "positive".  
Therefore, we know that higher levels of education are associated with higher annual 
incomes.  However, neither Pearson's Product Moment Correlation nor any other 
measure of association (e.g., gamma or Kendall's taub) can tell us whether each 
additional year of education is associated with an expected annual increase in 
income of $50, $500, $5,000, $50,000, or any other amount.  If you were 
contemplating spending thousands of dollars to obtain an advanced degree, I think 



you would want to have a clear idea of how much your annual income might be 
expected to increase.  As one of the central tasks of a quantitative analysis is to 
estimate the amount (i.e., the magnitude) of change in the dependent variable 
associated with a specified amount of change in the independent variable(s), such a 
failure is a critical limitation.                
 Perhaps a diagram would help make the previous point clearer.  The 
"strength" of the association between variables X and Y is measured by how close 
the points are to a line drawn to fit them. In the diagram ahead there are two lines.  
Since the points surrounding each line are equally close to the line they surround, 
each line would represent a correlation of identical strength (for example, .70).  
Alternatively, the steepness of the line is the "magnitude" of the association between 
variables X and Y.  The steepness of the line (i.e., the magnitude) tells us how many 
units of change in Y occur for a particular amount of change in X  (e.g., how many 
dollars of additional annual income you can expect to earn (continued on next page) 
 
 
 
 
 
 
 
 

 
 
 



 



Rather than read the boring assignments for this course, suppose you decide 
to go to Las Vegas.  Let us say that you walk into a casino and just feel "lucky."  
Instead of playing one of the various games, you locate the floor manager and tell 
him that you think you will flip heads on each of the first ten tosses of a coin.  The 
floor manager might then ask you what odds you would want and how much you 
would be willing to wager.  You are so confident that you reply that you would expect 
to be paid ten dollars for every one dollar that you wager and you would be willing to 
wager up to $1,000.  If the floor manager knew much about statistics he would likely 
accept your offer.  The actual probability of tossing ten consecutive heads with a fair 
coin is slightly less than one in a thousand (.5

10
 = approximately .001).  Thus, if the 

coin is fair, you would lose this bet slightly more than 999 times out of 1,000.  You 
were very generous to accept ten to one odds.  Perhaps you should have taken this 
course before wagering!  In any event, the floor manager accepts your terms and 
wants you to wager $1,000.  You nod in agreement, pull out a coin and start tossing.  
 After tossing ten consecutive heads you expect to be paid.  However, before the 
floor manager pays off, he wants to toss the coin himself.  In effect, he challenges 
your belief that the coin is fair.  Fortunately, this is an easy request to honor.  The 
floor manager tosses the coin 200 times and heads come up 100 times.  So, he 
concedes that the coin was fair and pays you.  By doing so, he is admitting that we 
have just witnessed an extremely rare event.   
 Two points in the preceding example are important for our purposes.  First, 
notice that a fair coin could come up heads ten consecutive times.  It was just 
extremely unlikely (but possible).  Thus if a survey tells us that the Republican 
candidate is supported by more potential voters than the Democratic candidate, it is 
not impossible that there is actually either no difference in their support levels, or 
that the Democratic candidate is leading.  Given our results, it was just more likely 
that the Republican candidate was ahead.   Second, in the coin tossing example, we 
were able to repeat the experiment.  While we will never know the proportion of 
heads the coin would ultimately produce, the ease with which we could continue to 
toss the coin meant that it was possible to obtain a large number of tosses.  Thus, 
the floor manager could be quite certain (but never know for sure) that the coin was 
actually fair.  Unfortunately, in most situations a political scientist will not be able to 
replicate the study.  To liken this to the coin tossing example, it would mean that 
when the floor manager challenged the fairness of the coin, we would not have been 
able to continue tossing the coin.   Thus, the only results we usually have are those 
from the observations (coin tosses) we could originally obtain.  There would be no 
additional information.  Therefore, we would have had to make a judgment about the 
fairness of the coin with only a few tosses.  Given that the probability of a fair coin 
producing ten heads in ten tosses was .001, our best guess would have been that the 
coin was unfair.  Obviously, we would have been incorrect, but that would have been 
the most reasonable conclusion given the actual probability and the behavior of the 
coin over those ten tosses. 
 The coin tossing example, and the ensuing discussion, deal with one of the 
most important topics of this course, statistical inference.  Two of the most 
important concepts in statistical inference are a population and a sample.  A 
population consists of all the possible observations on the same unit of analysis 
(e.g., a person, a city, a nation, etc.) having a particular attribute in common (e.g., 
being an eligible voter in the United States).  A sample is a subset of the population.  



A sample is "random" if every member of the population has an equal chance of 
being selected.  Statistical inference is important to study because we almost never 
know the population result.  Hence, we almost invariably infer the population result 
from a sample.  As one might guess, sampling becomes an important topic because 
the more accurately our sample represents the population, the more accurate our 
inferences are likely to be. 
 To continue the coin tossing example for a moment.  If possible, we would like 
to know whether, or not, the coin was fair.  As the coin does not wear out, it could be 
tossed an infinite number of times.  This is what is termed an "infinite population."  
Hence, we could never know for certain whether the coin was actually fair.  So, we 
"infer" what the ultimate (or "population") probability of tossing a head with this coin 
on the basis of a sample of tosses.   The fundamental question of statistical 
inference is: How likely are the results to be the product of chance?  Applied to the 
coin tossing example, this question could be phrased as follows: How likely would a 
fair coin flip ten heads in ten tosses?  As we know, the probability is less than .001.  
Therefore, we conclude that the coin is probably unfair.  Given what happened in 
subsequent tosses of the coin, we realize that such a judgment would probably be 
incorrect (although we are not certain).   
 Inferring from a sample (the 200 coin tosses) to a population value (the "true" 
probability of tossing a head for this particular coin) is the process of statistical 
inference.  As you read the following pages try to keep the fundamental question of 
statistical inference in mind.  See how the readings help us answer this question.  In 
the pages immediately ahead, we have a "population" of only ten families.  Since we 
know the income of all ten families we can calculate the "true" population mean 
income.  We then draw samples of two families each and calculate the mean income 
for each of these samples.  In all, there are 45 possible samples.  Do not be 
concerned with how we know there are 45 different samples.  That would needlessly 
detain us.  Just take it on faith. The importance of the example is that since we know 
the "true" population value (i.e., the "true" mean income of the ten families), we can 
see how the sample estimates of the mean income (i.e., the mean income from each 
of our two family samples) vary around the "true" population mean.  In this way, we 
can see how close our estimates (each sample mean is one "estimate" of the "true" 
population mean) are to the actual value we are trying to estimate (i.e., the "true" 
population mean).  We can use this information to assess how far off our estimates 
are likely to be when we do not know the "true" value in the population (e.g., the 
"true" popularity of a president among 180 million potential voters).   Since we 
almost never know the "true" population value, assessing the accuracy of our 
"estimate" is critical.    
 Assume we were interested in the income levels of the parents of children 
participating in a free breakfast program. For simplicity's sake let us assume we have 
a population of 10 children with their parents' incomes as follows: $3,000, $4,000, 
$5,000, $6,000, $7,000, $8,000, $9,000, $10,000, $11,000 and $12,000.  The 
mean income of these ten families is $7,500 (because $3,000 + $4,000 + $5,000 + 
$6,000 + $7,000 + $8,000 + $9,000 + $10,000 + $11,000 + $12,000 = $75,000 and 
$75,000/10 = $7,500 (example from Research Methods in the Social Sciences, third 
edition, by David Nachmias and Cava Nachmias).  Suppose we tried to estimate the 
population mean (which we now know is $7,500) by drawing a sample of two families 
from our population of 10 families.  The lowest possible estimate of the mean income 



we could attain by choosing two of the ten families would be $3,500 (the lowest two 
family incomes were $3,000 and $4,000 which, when added, total $7,000 and $7,000/2 
= $3,500).  Similarly, the highest possible estimate (by taking a sample of two 
families) is $11,500 ($11,000 + $12,000 = $23,000 and $23,000/2 = $11,500).  In each 
instance our sample estimate was either $4,000 lower, or $4,000 higher, than the 
"true" mean of $7,500 ($3,500 - $7,500 = -$4,000 and $11,500 - $7,500 = $4,000).  Any 
other possible sample (i.e., picking any two incomes other than the two lowest or the 
two highest) would have produced an estimate that was less than $4,000 away from 
the "true" population mean of $7,500.  In all, 45 different samples of two could be 
drawn from these 10 family incomes (i.e., $3,000 + $4,000 is one sample, $3,000 + 
$5,000 is a second sample, $3,000 + $6,000 is a third sample, and so on).  The 
important question is: How do these 45 sample estimates of the mean income 
distribute themselves around the "true" mean income of the population (i.e., $7,500)? 
The sample estimates will be distributed closely to the normal distribution that we 
studied previously.  For example,  the sample means that occur the most frequently 
are those closest to the "true" population mean of $7,500.  For example, 5 of the 45 
possible samples have the same mean as the population (i.e., $7,500).  While the next 
sentence may be difficult to understand, just keep reading (it will become clearer as 
we proceed).  Second, the mean of the sample means is the same value as the 
population mean (i.e., $7,500).  Thus, as there are 45 different samples, there are also 
45 sample means (i.e., we can calculate a mean from each sample).  If we add up 
these 45 sample means and then divide this total by 45 (remember, to calculate a 
mean we add up the scores and then divide by the number of scores we added) the 
resulting "mean of the sample means" will equal the population mean (which we 
know is $7,500).   Third, the sample means that are furthest from the “true mean” 
(i.e., $3,500 and $11,500 are the furthest from $7,500 of any possible sample means) 
are the sample means least likely to occur (i.e., only one of the 45 samples has a 
mean of $3,500 and only one sample has a mean of $11,500).   The closer to the “true 
mean” the sample mean is the more likely it is to occur.  Since $6,000 is closer to 
$7,500 than $3,500, more samples have a mean of $6,000 than a mean of $3,500.   
 In the previous example we had such a small population (10 families) that we 
could actually know the income of each family in the population.  Thus, we could 
calculate the "true" population mean (i.e., add up the income of all 10 families and 
divide this total by 10).   However, typically a political scientist is working with such a 
large population that they can not possibly obtain a score for each member of the 
population.  For example, if a political scientist is studying the impact of a 
government policy on the income of American families, s/he could not possibly find 
out the income of each American family.  Therefore, a political scientist must sample 
from the population of interest.  A very important question then becomes: How 
representative is our sample of the population it was drawn from?  The importance 
of our previous example was that since we could know the "true" population mean 
($7,500) and also draw samples from this population, we could assess how close the 
sample means were to the "true" population mean.  While it is possible that the mean 
from any one sample of two families could be as much as $4,000 lower or higher than 
the "true" population mean of $7,500 (i.e., the sample mean could be as low as 
$3,500 or as high as $11,500), typically, the sample mean is fairly close to the "true" 
population mean.   Most of the sample means are within approximately $1,500 of the 
population mean of $7,500 (i.e., most of the area under the curve is between $6,000 



and $9,000).    
 Since a political scientist can usually only draw one sample, let us see if we 
can assess how accurate this one sample we draw is likely to be.  As a political 
scientist typically has a sample size of more than 30, they usually are working with 
what statisticians call "large" sample properties.  Make sure you do not confuse the 
size of the sample with the number of samples taken.   What I just said was that a 
political scientist typically has more than 30 observations in the one sample that they 
are able to study.  This might mean having the income of each of 30 families.  Such a 
situation would be one sample of size 30, not 30 samples.   
 Instead of the low income families of the school breakfast program, suppose 
we draw a random sample (i.e., every member of the population has an equal chance 
of being selected) of 100 families from the approximately 180 million American 
families and find that the mean income for this sample is $37,000.   Remember from 
pages 39-40 that the standard deviation shows how far the scores deviate (i.e., differ) 
from the mean.  Applying the formula and computations that we did when we 
examined the standard deviation,  suppose we find that the standard deviation of our 
sample is $7,000.  This would tell us that incomes varied considerably among these 
100 families because the standard deviation is approximately 19% of the mean (i.e., 
$7,000 is approximately 19% of $37,000).  Thus, the sample mean income of $37,000 
did not occur because most every family in the sample earned approximately 
$37,000.   
 Now, we are in a position to answer the question I posed before: How 
representative is our sample of the population?  The next few sentences are likely to 
be confusing.  As always, just keep reading!  Over the next several paragraphs, the 
discussion will start to make sense.  Just keep reading!  From our discussion of the 
normal curve we know that if we have a normal distribution, approximately 68% of 
the cases (i.e., in this instance family incomes) are within (i.e., plus or minus) 1 
standard deviation of the mean and approximately 95% of the cases are within 2 
standard deviations of the mean.  Let us assume that the scores in our sample are 
normally distributed.  Since the sample mean is $37,000 and the sample standard 
deviation is $7,000, approximately 68% of the families should have incomes between 
$30,000 and $44,000 (i.e., $37,000 - $7,000 = $30,000 and $37,000 + $7,000 = $44,000). 
Furthermore, approximately 95% of the families should have incomes between 
$23,000 and $51,000 (i.e., $37,000 - $7,000 - $7,000 = $23,000 and $37,000 + $7,000 + 
$7,000 = $51,000).   
 If we make one simple change, we can apply the information we have from our 
sample (i.e., the mean and the standard deviation) to estimate how representative our 
sample is of the population.  Our sample mean is the mean income of the 100 family 
incomes that we randomly selected from the approximately 180 million American 
families.  The population mean income is the mean income of all 180 million 
American families.  Our question is: How close is our sample mean of $37,000 likely 
to be to the "true" population mean of the 180 million American families?  Since we 
do not know the standard deviation of family income for the 180 million American 
families, we have to estimate it from our sample.  We already know that the standard 
deviation in our sample is $7,000.  The next sentence will be confusing.  Just keep 
reading!  Let us divide this sample standard deviation by the square root of the 
sample size minus 1.  Since our sample size is 100, the sample size - 1 is 99 (i.e., 100 
- 1 = 99).  The square root of 99 is 9.94 (because 9.94 times 9.94 is approximately 



equal to 99).  If we then divide the sample standard deviation by the square root of 
the sample size - 1 we have $704.2 (i.e., $7,000/9.94 = $704.2).  Do not be concerned 
with either "why" we needed to make the above "adjustment" to the sample standard 
deviation or "how" the formula for this "adjustment" was derived.  That would 
needlessly detain us and not be particularly insightful.  Just follow the discussion 
ahead to see "what" this "adjustment" will permit us to do.   
 Since we have a large sample (i.e., a sample size of over 30 - our sample size 
is 100, easily larger than 30), we can use the percentage distribution capabilities of 
the normal curve to see how closely our sample mean corresponds to the population 
mean.  That last sentence was long and difficult, let us apply it.  The "adjusted" 
sample standard deviation (i.e., $704.2) can be used to show how accurate our 
sample mean income (i.e., $37,000) is of the population mean income of all 180 
million American families.         
 If we have a normal distribution, approximately 68% of the cases (i.e., in this 
instance family incomes) are within (i.e., plus or minus) 1 standard deviation of the 
mean and approximately 95% of the cases are within 2 standard deviations of the 
mean.  The next sentence may be confusing, just keep reading!!!  Using the sample 
mean income, $7,000, and the "adjusted" sample standard deviation computed on 
page 43, $704.2, we can say that our estimate of the population mean, $37,000, is 
accurate within plus or minus $704.2, approximately 68% of the time.  Thus, we have 
approximately a 68% probability that the "true" population mean is within $704.2 
(plus or minus) of our sample estimate of $37,000.  In other words, given our sample 
estimate of $37,000, a sample size of 100, and an "adjusted" standard deviation of 
$704.2, there is approximately a 68% chance that the "true" mean income in the 
population of 180 million American families is between $36,296 ($37,000 - $704.2 = 
approximately $36,296) and $37,704 ($37,000 + $704.2 = approximately $37,704).  
Furthermore, we can say that there is approximately a 95% probability that the "true" 
population mean income of the 180 million American families is between $35,592 
($37,000 - $704.2 - $704.2 = approximately $35,592) and $38,408 ($37,000 + $704.2 + 
$704.2 = approximately $38,408).  Equivalently, we can say that if we drew 100 
random samples of 100 persons each, the mean income from approximately 95 of 
these 100 samples would be between $35,592 and $38,408.  Political scientists 
typically say that interval from $35,592 to $38,408 represents a 95% "confidence 
interval."  Thus, given these results, we would be "95% confident" that the "true" 
mean income of the 180 million American families (the population of interest) was 
between $35,592 and $38,408.   
 Remember that the only information we have is the 100 family incomes from 
our one sample.  The above example demonstrates a critically important statistical 
property: we can tell how possible sample means would vary from each other (e.g., 
95% of the samples of size 100 would have a mean between $35,592 and $38,408) 
even though we can actually obtain data from only one sample.  While proving this 
assertion is beyond the scope of this course, the school breakfast example provided 
good evidence of this capability.  Since the "population" was so small (10 families) 
we could obtain the family income for all members of the population, draw samples 
from this population, and then see how the sample estimates of the mean family 
income differed from the "true" population mean (which we knew to be $7,500).  
Statisticians employing powerful computer programs have used the same 
procedures we did with much larger populations and have proven the assertion I 



made above.  Since a political scientist typically has information (i.e., data) from only 
one sample, it is extremely fortunate that we can know how other samples that we 
can not actually attain would likely vary (i.e., differ) from the one sample that we 
have.     
 How does the accuracy of the estimate of the population mean vary according 
to the size of the sample?  The larger the sample the closer the sample mean is likely 
to be to the "true" population mean.  For example, if the size of our random sample 
had been 1,000, the 95% "confidence interval" would have been from $36,557 to 
$37,443 (i.e., minus or plus $443 from $37,000).  The 95% "confidence interval" from 
the 1,000 person sample ($36,557 to $37,443) is considerably "narrower" than the 
95% "confidence interval" from the 100 person sample ($35,592 to $38,408).  The 
"narrower" the 95% "confidence interval," the closer the typical sample mean is likely 
to be to the "true" population mean.     
 You have probably seen polling results reported on either television and/or in 
the newspaper.  Let us use the presidential popularity question that pollsters 
typically ask: Do you believe President (then the last name of the current president) 
is doing a good job as president?   Typically, respondents can answer "yes," "no" or 
"no opinion/decline to state."  Suppose a political scientist is trying to obtain a 
random sample from Long Beach voters to estimate the president's popularity in 
Long Beach.  The next sentence may be confusing, just keep reading!  An important 
question would be:  How large a random sample do I need to be 95% confident that 
my sample results are within say plus or minus 3% of the "true" figure for the city of 
Long Beach?  Thus, if 57% of the respondents in my randomly drawn sample of the 
eligible voters in Long Beach think that the president is doing a good job, how large 
would my sample need to be in order for me to conclude that there is a 95% 
probability that the president's popularity among all eligible voters in Long Beach is 
between 54% and 60% (i.e., within minus or plus 3% of 57%)?  Assuming that the 
president's popularity is "around" 50% (which is not that different from 57%), Table 7-
2 below tells me that since Long Beach has a population between 100,000 and 
500,000, I would need a sample of approximately 1,056 respondents to be 95% 
confident that my sample results were within minus or plus 3% of the "true" support 
level for the president among the eligible voters of Long Beach.  
 

Sample Size Necessary for 95 Percent Confidence 
 
 Size of Population  +/- 1 percent                +/- 3 percent 
 
  2,000                      Entire Population                696  
 
        100,000                                 8,763                        1,056   
 
        500,000 +                              9,423                        1,065  
 
 Source: Adapted from H.P. Hill, J.L. Roth and H. Arkin, Sampling in Auditing 
 
 
 



 Please note that in the above example the "population" of interest is not all 
citizens of Long Beach, but rather all eligible voters of Long Beach.  Since children 
can not vote, they are not part of the "politically relevant" population.  Remember 
that the "population of interest" is composed of all those who share some particular 
characteristic (i.e., being an eligible voter in Long Beach).  This is not the same as all 
people in Long Beach.  Remember also that a population can be something other 
than people.  For example, a population of coin flips, states (not the people in the 
states), wars between nations (again, not the people in the nations), etc.    
 Further note that for a population of 500,000 or more (e.g., the entire adult U.S. 
population), you need only 9 more respondents than for a population of 100,000 
(1,065 instead of 1,056) to have a 95% probability that our estimate is within 3% (plus 
or minus) of the "true" value (i.e, a 3% error margin).  To repeat our previous 
example, if we randomly surveyed 1,056 adult residents of Long Beach and found 
that 57% of them approved of how the president was handling his job we would have 
a 95% probability that our estimate was within 3 percent of the true popularity of the 
president in Long Beach.  Thus, we have a 95% chance that the president's true 
popularity in Long Beach is between 54% and 60% (i.e., minus or plus 3% from 57%), 
with our best estimate being that it is 57%.  Remember that this means that there is 
also a 5% chance that the president's true popularity in Long Beach is not between 
54% and 60% (i.e., either lower than 54% or higher than 60%).    
 To achieve the same accuracy for the entire adult U.S. population we would 
need to randomly survey approximately 1,065 respondents.  This is only 9 more 
people than our Long Beach survey of 1,056.  However, we could not just "add" 9 
respondents to our random sample from Long Beach and accurately generalize to 
the entire U.S. adult population.  Obviously such a sample would not even approach 
randomness (over 99% of the sample would be from Long Beach while Long Beach 
represents less than 2/10s of 1 percent of the U.S. population).   Nevertheless, 
despite the fact that the entire adult U.S. population is many times larger than the 
adult population of Long Beach, the necessary sample size (assuming it is randomly 
drawn) is almost identical (1,065 vs. 1,056).  Also, notice that for a population of only 
2,000 you would need a random sample of 696 to have a 95% chance of having an 
estimate that is within plus/minus 3% of the true figure.  This would mean that the 
sample would be approximately 35% of the size of the population (696 is 
approximately 35% of 2,000).  To achieve the same accuracy for a population of 
500,000 would require that the sample be approximately .2% (two tenths of one 
percent) of the population.  This illustrates an important aspect of sampling.  It is the 
absolute size of the sample, not the sample as a percentage of the population that is 
the critical factor.   With a random sample of approximately 1,100 people we can 
fairly accurately generalize to about any size population.   
 The next time you see a national poll on television or in the newspaper, notice 
in the "fine print" that the sample size will usually be approximately 1,100 and that it 
will have a 95% probability of a plus/minus 3% error margin.  The main reason that 
most pollsters do not strive for a lower error margin than plus/minus 3% is the cost.  
Notice in the Table page 47 that for a population of 500,000 (or more) in order to 
lower the error margin from plus/minus 3 percent to plus/minus 1 percent would 
require an increase in the sample size from 1,065 to 9,423.  The increased precision 
is simply not worth the additional cost. 
  



 Statistical Inference and Hypothesis Testing 
 
 The importance of sampling is that it allows us to estimate values in the 
population of interest (e.g., the mean score in the population of interest).  This is 
particularly important when we try to test a hypothesis.  The strategy by which we 
test a hypothesis is called a research design.  A good research design is one that 
eliminates plausible alternative explanations (i.e., alternative to the independent 
variable) for the effect, if any, that is being observed on the dependent variable.  One 
alternative is simply chance, since samples will vary from their population by chance 
alone, as we have seen.  For example, in the school breakfast example, not every 
sample had the same mean family income.  Procedures for establishing statistical 
significance are a way to define the likelihood of chance as an explanation when 
randomness can be assumed, such as when observations have been selected at 
random.  Just keep reading!!  The following example was inspired by Susan Welch 
and John C. Comer, Quantitative Methods for Public Administration, 2

nd
 ed., pp. 48-

52. 
 Since many of you are interested in public law, let us use an example that a 
lawyer might face: jury selection.  In a community that is 50 percent women and 50% 
men, what is the likelihood that no men will serve on a particular jury?  We will make 
the following assumptions: (1) the jury is composed of 12 people; (2) the selection of 
each juror is an independent event (i.e., that choosing any one person does not 
affect the chance of any other particular person being selected – thus, if a spouse is 
selected it would not be an independent event because the second person was 
selected because they were married to the first person selected); and (3) the city has 
an equal number of women and men.   
 With the assumptions above, what is the probability of having a jury entirely 
composed of women?  Without doing the math, it is approximately .0002 (i.e., only 2 
times in 10,000 would this occur by chance). Thus, the laws of probability tell us 
that in only 2 times out of 10,000 (.0002) would a jury be all women (or all men) if 
random selection were used to pick 12 jurors from a population that was 50 percent 
women and 50 percent men.  A critically important result is that an evenly divided 
jury (i.e., 6 women and 6 men) would occur only about 23% of the time.  Therefore, 
we can expect to have an unequal jury selected (i.e., either more women than men or 
vice versa), even though the selection process was fair, over 75% of the time.   So, a 
reasonable question might be as follows: how much of a departure from a 6 women, 
6 men jury will we accept before we think the jury selection process is biased in favor 
of either women or men?  For example, would an 8 woman, 4 man jury be 
insufficiently different than 6 women and 6 men, or if we obtain an 8 woman, 4 man 
jury should we reselect the jury on the basis that the selection process wasn’t fair?   
 Having a full list of the probabilities would be useful, so let me provide it: 
12 women – 0 man (.0002); 11 women – 1 man (.0029 or about 3 times in 1,000); 10 
women – 2 men (.016 or about 1.5%); 9 women – 3 men (.0537 or about 5%); 8 women 
– 4 men (.1208 or about 12%); 7 women – 5 men (.1934 or about 19%) and 6 women - 
6 men (.2256 or about 23%).  Since women and men are an equal percentage of the 
population is this particular city, the probabilities for majority male juries are the 
same as for majority female juries (i.e., the probability of 12 men – 0 women is .0002).  
 What is termed the “null” hypothesis is a hypothesis of no effect.  For 
example, a null hypothesis would be that the balance of power between two nations 



has no impact on the probability those nations will go to war with each other.  Thus, 
if the null hypothesis is true, if nation A had 1.5 times the military power of nation B 
and this ratio suddenly changed to 2.0 (i.e., nation A now had twice the military 
power of nation B) the probability that war would breakout between these two 
nations would be unchanged.   
 Applied to our jury selection example, the null hypothesis is that the jury 
selection process is “fair” (i.e., unbiased) and that any deviations from a 6 woman, 6 
man jury is strictly the result of chance (i.e., like a “fair” coin coming up “heads” 6 
straight time rather than 3 heads and 3 tails).  Remember that the long run probability 
may not occur in the short run.  This is exactly what a gambler is counting on: that 
over the series of bets that they make they will win more frequently than the laws of 
probability say they should (e.g., if they are betting on “heads” that even though the 
coin is “fair” it will flip more than 5 heads in the next 10 flips).   Thus, in our jury 
selection example the question is this: if there is an unequal number of women and 
men selected to the jury, did this occur because the jury selection process was 
unbiased or was the selection process biased in favor of the gender that is a majority 
of the jury? 
 To help answer this question statisticians refer to what is called the "region of 
rejection."  The region of rejection is a group of outcomes that are so different from 
what the null hypothesis predicts that we conclude that the null hypothesis is 
probably false (although we do not know for sure - there is still a small chance the 
null hypothesis is true).  In the jury selection example there is less than a 10% chance 
(the actual figure is 7.2%) that the jury selection process is unbiased if 3 or fewer 
women are selected (i.e., the probability of 0 women is .0002, 1 woman is .029, 2 
women is .015 and 3 women .053:  .0002 + .0029 + .016 + .0537 = .0721 = 7.2%).    
 If we are willing to run a 10% chance of rejecting the null hypothesis that the 
jury selection process is unbiased in favor of the alternative hypothesis that the jury 
selection process is biased when in fact the jury selection process is unbiased, then 
we would reject the null hypothesis if 3 or fewer women are selected for the jury.  If 
we do this, 90% of the time the null hypothesis is incorrect.  Thus, there is a 90% 
probability that if 3 or fewer women are selected for the jury there is gender bias in 
the jury selection process.  Alternatively, there is a 90% probability that the null 
hypothesis is false.  However, this also means that there is a 10% chance that the 
null hypothesis is actually true (i.e., there is still a 10% chance the jury selection 
process is unbiased if 3 or fewer women are selected).    
 If we reject the null hypothesis and the null hypothesis is actually true, we will 
have committed what is called a "type I" error.  Rarely, if ever, will we know if the null 

hypothesis is true.  What we will know is the probability that the null hypothesis is 

true.  Thus, given our findings, there is a 10% chance that the null hypothesis is true, 

it does not mean the null hypothesis is actually true, just that there is a 10% chance 

that the null hypothesis is true.  It is a probability, not a certainty!   If we use the 10% 
"region of rejection" it means that we will reject any outcome that has a 10% or less 
probability of occurring by chance.  In the jury selection example this would mean 
rejecting the null hypothesis that the jury selection process is unbiased if 3 or fewer 
(i.e., 3, 2, 1 or 0) women are selected.  The level of significance is equal to the region 
of rejection. Thus, if the "region of rejection" contains any outcome that has a 10%, 
or less, probability of occurring by chance then we are using a level of significance 
of 10%.   



 Here are some important equalities: the region of rejection is equal to the level 
of significance which is equal to the probability of committing a type I error (i.e., 
rejecting the null hypothesis when the null hypothesis is actually true).  Thus, if we 
use the 10% level of significance it means that we will accept the null hypothesis as 
being true if the result is something that would occur more than 10% of the time by 
chance (e.g., selecting a jury with more than 3 women) and reject the null hypothesis 
if the result would occur 10% or less of the time by chance (e.g., selecting a jury with 
3 or fewer women).  Therefore, our decision rule using the 10% level of significance 
in the jury selection example would be to reject the null hypothesis if a jury with 3 or 
fewer women is selected and run a 10% chance that the null hypothesis is actually 
true.  Keep in mind, if we reject the null hypothesis it does not necessarily mean that 
we commit a "type I" error.  The null hypothesis may be false (indeed there is a 90% 
chance it is false).  We only commit a "type I" error if we reject the null hypothesis 
and the null hypothesis is true.  If we reject the null hypothesis and the null 
hypothesis is false we made the correct decision.  Since we rarely, if ever, know 
whether the null hypothesis is actually true, when we reject the null hypothesis we 
almost never know if we have committed a "type I" error.  All we know is the 
probability that we have committed a "type I" error (10% in this example). 
 While you will occasionally see a political science article use a 10% level of 
significance, the general standard is a 5% level of significance.  Thus, political 
scientists typically only reject the null hypothesis if the null hypothesis has a 5% or 
less probability of being true.  If you read a political science article and it says that 
the results are either "statistically insignificant" or "not statistically significant" it 
means that the null hypothesis has greater than a 5% chance of being true. 
Therefore, we would not reject the null hypothesis.  For example, if we use the 5% 
(i.e., .05) level of significance (which political scientists typically do) and our results 
say that the null hypothesis has a 7% chance of being true, we would not reject the 
null hypothesis (because 7% is greater than 5%).   
 If the results are statistically significant at the .05 level it means the following: 
(1) we will reject the null hypothesis 100% of the time; (2) 95% of the time we will have 
made the correct decision because the null hypothesis will be false 95% of the time; 
(3) 5% of the time we will have committed a type I error because we will have rejected 
the null hypothesis when the null hypothesis is true; (4) we will never know for 
certain if the null hypothesis is false.    
 Why do political scientists typically use the 5% level of significance?  Because 
we are very afraid of committing a "type I" error (i.e., rejecting the null hypothesis 
when the null hypothesis is true).  We are very concerned that we will conclude that 
variable X influences variable Y when it actually does not.  For example, we will want 
to avoid concluding that the balance of power effects the probably war will occur if 
the balance of power actually has no effect on the probability that war will occur.   
 The lower you set the level of significance, the harder it is to reject the null 
hypothesis.  This is because the lower you set the level of significance the more 
different the results have to be from what would occur if the null hypothesis were 
true (just keep reading!).  Take the jury example we have been working with.  From 
the probabilities provided on page 48, if we use the .10 level of significance, we 
would reject a jury of 9 men and 3 women as being selected from a biased selection 
process.  However, if we use the 5% significance level (i.e., the .05 level), we would 
not reject the 9 men/3 woman jury as being chosen from a biased selection process.  



Instead, we would accept the null hypothesis that the 9 man/3 woman jury was 
selected from an unbiased process.  Using a 5% level of significance, a 9 man/3 
woman jury is not sufficiently different than the 6 man/6 woman jury specified by the 
null hypothesis to cause us to plausibly rule out an unbiased selection process.  It 
would have taken a jury with 10 or more men (i.e., 2 or fewer women) to conclude that 
the jury selection process was biased using the 5% (i.e., .05) level of significance 
(see the probabilities on page 48).   Thus, the lower the level of significance, the 
more difficult it is to reject the null hypothesis.  
 The opposite of a “type 1” error is a “type II” error: accepting the null 
hypothesis as true when the null hypothesis is actually false.  While the "type II" error 
is important, political science literature almost never discusses it.  Virtually all of the 
attention in political science (and most social sciences) is on the "type I" error.  Why 
is this so?   One answer to this question is as previously mentioned, political 
scientists are very concerned with committing a "type I" error.  As previously 
mentioned, the lower you set the level of significance (e.g., .05 is lower than .10), the 
more difficult it is to reject the null hypothesis. The more difficult it is to reject the 
null hypothesis the less likely you are to commit a "type I" error.   However, since 
lowering the level of significance means that you are less likely to reject the null 
hypothesis, it also means that you are more likely to retain (or not reject) the null 
hypothesis.  Since a "type II" error is to retain the null hypothesis when we should 
reject it, this means that the lower we set the level of significance, the less likely we 
are to commit a "type I" error (rejecting the null hypothesis as false when the null 
hypothesis is true), but the more likely we are to commit a "type II" error (accepting 
the null hypothesis as true when the null hypothesis is actually false).  Thus, our 
desire to minimize the possibility of a "type I" error means we will have to place less 
emphasis on (i.e., run a greater risk of) committing a "type II" error.  Put somewhat 
differently, if we reject the null hypothesis we are making a statement of knowledge 
(i.e., that X does influence Y) whereas if we do not reject the null hypothesis, we are 
not making a statement of knowledge (i.e., we are not saying that X influences Y).  If 
we make a "statement of knowledge" (i.e., reject the null hypothesis) we want to be 
very sure we are correct.  The concern with a “type II” is more prevalent in public 
policy than in political science.  For example, the cost of retaining a false null 
hypothesis such as that a vaccine has no effect of the disease it is intended to 
prevent (an hence the vaccine isn’t distributed) could have potentially fatal 
consequences.  
 It is important to realize that if we do not commit a "type I" error it does not 
mean that we have automatically committed a "type II" error.   If we do not reject the 
null hypothesis and the null hypothesis is true, we made the correct decision.  We 
only commit a "type II" error if we do not reject the null hypothesis when the null 
hypothesis is actually false. 
 A second reason why political scientists are typically not greatly concerned 
about a "type II" error is that political science theory (as with theory in most social 
sciences) usually does not supply the information necessary to definitively calculate 
the probability of committing a "type II" error.  Let me use a brief example from 
comparative politics and you will quickly understand what I am talking about.  In 
recent years there have been a number of studies by scholars in comparative politics 
that test theories concerning factors (i.e., independent variables) that influence how 
long a government in a parliamentary system lasts.  Remember that many foreign 



countries (e.g., Great Britain) have an election if the ruling political party or ruling 
coalition (if no party has a majority of the seats in the legislature) does not prevail on 
a vote in the national legislature.   
 Let us say that you are a comparative politics scholar and you want to see 
what effect the number of political parties (the independent variable) has on the 
duration of time before the ruling party will fail on a vote in the legislature (the 
dependent variable).  One plausible hypothesis might be that the greater the number 
of political parties the less likely one party can rule effectively, hence, the shorter the 
likely duration of time between elections.  Thus, we would probably hypothesize a 
negative relationship between the number of political parties and the duration of time 
between elections.  However, our theory does not specify how much each additional 
political party is likely to shorten the period of time between elections.  For example, 
on average, is each additional political party expected to reduce the time period until 
the next election by 1 month, 2 months, 10 months, or what?  It is extremely unlikely 
that any reputable comparative politics scholar would have a theory that would yield 
a specific amount of time that each additional party is likely to shorten the time until 
the next election.  Unless our theory was strong enough to specify an exact amount 
of time that each additional political party would likely shorten the time before the 
next election (e.g., 10 months) we can only crudely estimate the probability of 
committing a "type II" error.  This is invariably the situation in political science, 
economics, psychology and sociology.  This is one reason these disciplines do not 
pay much attention to the probability of committing a "type II" error. 
 Most comparative scholars would probably agree that, all other factors being 
equal, the more political parties the more conflict and the less time any one party or 
particular coalition of parties will stay in power (i.e., the shorter the time between 
elections).  As a practical matter, what a comparative politics scholar would be trying 
to do is to see if the evidence is strong enough that we could plausibly reject the null 
hypothesis that, all other factors being equal, the number of political parties is 
unrelated to the time between elections with a 5% or less chance that the null 
hypothesis is true.  This is a concern with a "type I" error, not a "type II" error. 
 In the jury selection example there were situations where we would "accept" 
the null hypothesis that the jury selection process was unbiased (e.g., if the jury was 
composed of say 7 women and 5 men).  In political science we almost never "accept" 
the null hypothesis as being true.  The nature of the scientific process is such that 
we never make a "final" judgement.  We only make tentative judgements such as: 
given the current state of the evidence this is what we believe occurs.   
 It is important to realize that the hypothesis the political scientist tests is 
called the "alternative hypothesis" or simply "the hypothesis" (i.e., that X effects Y), 
not the null hypothesis. For example, a political scientist would test a hypothesis 
such as: the more liberal the government the greater the share of income going to 
the poor.  The null hypothesis would be that the liberalism of the government has no 
effect on the share of income going to the poor.  If the evidence against the null 
hypothesis is not statistically persuasive (i.e., the null hypothesis has greater than a 
5% chance of being true), the political scientist will simply conclude that the 
evidence is insufficient to reject the null hypothesis.  This means that the evidence in 
favor of accepting the "alternative hypothesis" (or "the hypothesis") is simply 
insufficient.  This does not mean we "accept" the null hypothesis as true.  We just 
could not reject the null hypothesis. If the null hypothesis has less than a 5% chance 



of being true, the political scientist will reject the null hypothesis and accept the 
"alternative hypothesis" (or "the hypothesis").     
 
 
 Further Discussion of Samples and Populations 
 
    While the readings have distinguished between a "sample" and a "population," 
they have not distinguished between a "finite" and an "infinite" population.  "Finite" 
means that there is a limited number of outcomes.  For example, there are only six 
possible outcomes from rolling a die (i.e., 1, 2, 3, 4, 5 or 6).  By contrast, "infinite" 
means that the number of outcomes is unlimited.  For example, while there is only 
one income a person actually earns in a particular year, there is an unlimited (i.e., 
infinite) number of different incomes a person might have earned in that year.  Thus, 
if we "rerun" the same year 100 times, an individual will probably earn 100 different 
incomes.  The following quotation applies the distinction between finite and infinite 
to statistical inference: 
    A population can be defined as the totality of all possible observations on 
measurement or outcomes.  Examples are incomes of all people in a certain country 
in a specific period of time, national income of a country over a number of periods of 
time, and all outcomes of a given experiment such as repeatedly tossing a coin.  A 
population may be finite or infinite.  A finite population is one in which the number of 
all possible observations is less than infinity.  However, the distinction between finite 
and infinite populations is more subtle than may at first appear.   For instance, a 
series of national income figures for the United States for a number of years, e.g., 
1948-1977, represents a finite collection of thirty observations and thus might seem 
to be a finite population.  But this would be a very narrow interpretation of historical 
events, since it would imply that the thirty measurements of national income were the 
only possible ones, i.e., that there is only one course that history might have taken.  
Now there are obviously not many people who would take such an extremely         
fatalistic view of the world; most people would admit that it was not impossible for 
some other, even if only slightly different, values of national income to have 
occurred.  This latter view underlies virtually all policy-oriented research in 
economics and econometrics (and political science) and will be used throughout this 
book.  Thus a population of national incomes in a given time interval includes not 
only the actual history represented by the values that were in fact observed but also 
the potential history consisting of all the values that might have occurred but did not. 
The population so defined is obviously an infinite one.  Similarly, the population of all 
possible outcomes of coin tosses is also infinite, since the tossing process can 
generate an infinite number of outcomes, in this case "heads" and "tails."  Most of     
the populations with which we deal with in econometrics (and political science) are 
infinite.  (emphasis added) 
   Source: Jan Kmenta, Elements of Econometrics, 2nd ed., pp. 3-4. 
 
 
 
 
 
 



 



 



 



 The purpose of this section is to introduce a test for statistical significance 
and apply the material you have recently studied.  The level of statistical significance 
is equal to the probability of committing a "type I error.”  A "type I error" is rejecting 
the null hypothesis when the null hypothesis is actually true.  If we reject the null 
hypothesis that X is unrelated to Y in favor of the alternative hypothesis that X is 
related to Y and our results are statistically significant at the .05 level, it means 
thatwe have a 5% (or less) chance of committing a "type I error.”      
 Suppose we are testing a hypothesis that could be derived from international 
relations theory: the balance of military power between two nations (variable X) is 
negatively associated with the probability that an ongoing conflict between these 
nations will escalate (variable Y).  Thus, since higher scores on balance of power 
(i.e., a more equal balance of power) are hypothesized to be associated with lower 
scores on conflict escalation (i.e., less escalation/less of a conflict) we are expecting 
a negative association.  The test of statistical significance we will use is the chi 
square test.  Do not worry about how the various probabilities below were 
calculated.  Suppose the results are as follows: 
 
   Probability that Conflict  will Escalate 
 
Equal Balance of Power       20%  (25) 
 
Unequal Balance of  Power  45%*  (85) 
        110 
  *significant at .05 
 **significant at .01 
***significant at .001 
 
 Since the probability that conflict will escalate is lower when power is equally 
balanced (20%) than when power is unequally balanced (45%), the hypothesis is 
supported.  We have not "proved" the hypothesis is "true."  The hypothesis could be 
still be "false."  All we can say is that the data are consistent with (or "support") the 
hypothesis.  Alternatively, it is "likely" that the hypothesis is true.  Never say that you 
have "proved" a hypothesis to be "true."  As long as the probability that conflict will 
escalate is lower when power is equally balanced than when power is not equally 
balanced, the hypothesis is supported.  For example, if the probability that conflict 
will escalate had been 60% (power equally balanced) vs. 85% (power unequally 
balanced), the hypothesis would still be supported because the critical factor is the 
direction and amount of difference between the probabilities (i.e., that the probability 
conflict will escalate with equally balanced power is lower and by how much), not the 
level where the differences occur (i.e., 20% vs. 45% as opposed to 60% vs. 85%).   
 The fundamental question of statistical significance is: How likely are the 
results the product of chance?  Applied to our situation this question can be phrased 
as follows: How likely are we to find a 25% difference (45%-20% = 25%) in the 
probabilities that conflict will escalate in our sample when the "true" difference in the 
population (all nations at all conflictual times) is zero percent?  If the actual 
difference is zero percent the null hypothesis is true.  Since we can not know the 
difference in the population (i.e., all nations at all conflictual times), we will never 



know for sure whether the null hypothesis is actually true.  Given our sample size 
(110 - see the table on page 57) the chi square test indicates that this 25% difference 
in probabilities is statistically significant at the .05 level (note the single asterisk - "*" 
in the table on page .  Therefore, if we reject the null hypothesis, we have a 5% (or 
less) chance of committing a "type I error."  Hence, while the null hypothesis could 
be "true," it is rather unlikely to be "true."   We reject the null hypothesis when (as in 
our situation) the probability of committing a "type I error" is 5% (or less). 
 Like all significance tests, the chi square test is based upon the following two 
criteria.  First, how great is the relationship between X and Y?  As I just mentioned, 
what we might call the "size of the difference" in our case is 25% because the 
difference in the probability that conflict will escalate between our two categories 
(i.e., equal balance of power and unequal balance of power) is 25% (i.e., 45% - 20% = 
25%).  Assuming the same sample size, if the "size of the difference" was greater 
than 25%, the results would be even more statistically significant.   
 Instead of the cross tabulation table that appears on the previous page, 
suppose we had calculated a gamma between the balance of power and the 
probability that conflict will escalate.  Suppose the gamma was -.37.  Assuming our 
variables were measured with little random measurement error, we know from page 
34 that a gamma of -.37 indicates a moderate negative association between the 
variables.  So, if we were using a gamma, instead of the "size of the difference" the 
first criteria would be the -.37 association.  Assuming the same sample size, had the 
gamma been -.57, instead of -.37, it would make the result more statistically 
significant (remember from page 37 that larger negative numbers, like larger positive 
numbers, mean a stronger relationship).   
 Instead of either a cross tabulation table or a measure of association (such as 
gamma), suppose we estimated the magnitude of the relationship  between the 
balance of power and the probability that conflict will escalate.  For example, look at 
the two line slopes on page 40.   Line "A" is noticeably steeper than line "B." Put 
another way: There is a greater increase in Y for each increase in X with line "A" than 
with line "B."  In the example on page 37, X is years of education and "Y" is income.  
Clearly, each additional year of education is associated with a greater increase in 
income with line "A" than with line "B."  If the sample size remains the same, the 
steeper the line, the more statistically significant the result.  Thus, if the sample size 
remained the same, line "A" would produce more statistically significant results than 
line "B."  Thus, which ever method by which you are estimating the relationship 
between X and Y (i.e., by cross tabulation, a measure of association - such as 
gamma or by the slope of a line - as we will later on with regression), if the sample 
size remains the same, the greater the relationship between X and Y, the more 
statistically significant the result.     
 The second principle of any test of statistical significance concerns how many 
observations (in our case 110) are used in estimating the relationship between X and 
Y.  The greater the relationship between X and Y, the smaller the number of 
observations you need to achieve statistical significance.  For example, if you toss a 
coin 10 times, and all 10 tosses are heads, you can be quite sure that the coin is 
biased.  Although the number of observations is small (10), the size of the difference 
is great (100% heads instead of the 50% heads we would expect if the coin were 
unbiased).  In this situation, if we reject the null hypothesis we have less than a 1 in 



1,000 chance of committing a "type I error." 
 Alternatively, with very large samples (e.g., 3,000) even very small differences 
will be statistically significant.  For example, if you toss a coin 100 times and heads 
come up 51 times, how sure would you be that the coin was biased?  Since only one 
less head would have produced an unbiased result (i.e., 50 heads and 50 tails), you 
would probably not be very sure that the coin was biased.  An unbiased coin is like a 
"null" hypothesis (i.e., no difference between the probability of heads and tails).  
However, if the coin comes up heads 51,000,000 times out of 100,000,000 tosses (as 
previously, 51% heads), this 1% difference (51% obtained vs. 50% expected) would 
be statistically significant (because of the extremely large sample).  Thus, just 
because a relationship is statistically significant, it is not necessarily substantively 
important.  A statistically significant finding that the probability conflict would 
escalate had decreased only 1% if power were equally balanced would not be strong 
support for our hypothesis.   
 Make sure you do not confuse statistical significance with support for the 
hypothesis.  Suppose you hypothesize that a coin will flip more heads than tails.  If 
you flip the coin 10 times and get 6 heads and 4 tails the results support the 
hypothesis (because 6 is greater than 4).  However, since the coin was only flipped 
10 times with a resulting 6/4 split, the results would not be statistically significant.  
However, if you flipped the coin 10 times and all 10 flips are tails, this is opposite to 
the hypothesis (because we hypothesized more heads than tails) and would be 
statistically significant (only 1 time in 1,000 would the null hypothesis - that the coin 
flips an even number of heads and tails - be true).   This is strong evidence against 
the hypothesis. 
 Political scientists invariably reject the null hypothesis if the null hypothesis 
has less than a 5% chance of being true.  Thus, if our results are statistically 
significant at the .05 level, we reject the null hypothesis that X has no effect on Y in 
favor of the alternative hypothesis that X does have an effect on Y.  In this situation, 
there is a 5% chance that we will commit a "type I error" (i.e., a 5% chance the null 
hypothesis is actually true).   
 If our study had either more observations than 110 and/or a greater "size of the 
difference" than 25%, our results might have been statistically significant at the more 
demanding (i.e., more difficult to achieve) .01 (only 1 time in a 100 would we commit 
a "type I error") or .001 (only 1 time in a 1,000 would we commit a "type I error") level. 
Obviously, if our results were statistically significant at either the .01 or .001 level, 
they would also be significant at the .05 level (because the .05 level is easier to 
achieve than either the .01 or .001 level).  So, if our results are statistically significant 
at either the .01 or .001 level we would reject the null hypothesis.  The advantage of 
achieving statistical significance at either the .01 or .001 level, as opposed to the .05 
level, is that we have a smaller chance of committing a "type I error." 
  
 



Multivariate Analysis 
 
 When political scientists build a model to explain and/or predict behavior 
they are typically trying to accomplish two tasks: (1) formulate an accurate model 
of the behavior in question; and (2) estimate how much impact each independent 
variable has on the dependent variable.  For example, if we want to examine why 
some senators vote more in favor of tax changes benefiting moderate and low 
income households than other senators, we need to think through what factors 
are likely to impact a senator’s votes on this issue.  The dependent variable in 
such a model (i.e., what we are trying to explain or predict) might be measured by 
the percentage of times the senator voted in favor of reducing after-tax income 
inequality.   Reducing after-tax income inequality would consist both of voting in 
favor of tax changes where over 50% of the benefits go to households with 
incomes equal to, or less than, the median income (i.e., if we took a 101 families 
ranked ordered from highest income – household #101 – to lowest income – 
household #1 this would mean over 50% of the benefits go to households 1 
through 51) and voting against tax changes where over 50% of the benefits go to 
households with incomes above the median (i.e., to households 52 through 101).  
In the analysis that follows this variable appears as “tax.”   
 More specifically, “tax” represents the percentage of times a senator votes 
in favor of the immediate self-interest of households with incomes equal to, or 
less than, the median income.  Thus, if the computer reads a score of 62 for tax 
this means that the senator voted in favor of the economic interest of households 
with incomes equal to, or less than, the median household income 62% of the 
time.   With the help of a public finance professor, I calculated scores for each 
senator on a major tax reform.  This discussion involves those scores.    
 Now we need to think through what factors (i.e., independent variables) 
might influence how frequently (i.e., the percentage) of times a senator would 
vote for tax changes primarily benefiting households with incomes equal to, or 
less than, the median.  Three factors come to mind: (1) the philosophy of the 
senator; (2) the party affiliation of the senator; and (3) the wealth of the state the 
senator represents.  Since conservatism is associated with a strong belief in 
allowing the market to determine relative living standards (e.g., resistance to  
creating or increasing the minimum wage) and specifically with the government 
establishing economic rights for citizens (e.g., a right to health care), a 
reasonable first hypothesis is that the more conservative the senator the lower 
their support for tax changes where over 50% of the benefits go to households at, 

or below, the median income (i.e., a “negative” association – higher scores on 

conservatism associated with lower scores of tax changes primarily benefiting 
middle and low income groups).  In the analysis to be presented later, we will 
measure a senator’s conservatism by the percentage of times they vote in favor 
of positions taken by a conservative interest group, the Americans for 
Constitutional Action.  Scores can range from 0% to 100% with higher scores 
indicating a more conservative voting record.  In the analysis that follows this 
variable is appears as “scons” (for senator conservatism). 
 Because households with incomes below the median income makeup a 
greater percentage of the vote of the Democratic party than the Republican party, 
a reasonable second hypothesis is that Democratic senators will support tax 



changes where over 50% of the benefits go to households with incomes at, or 
below, the median household income a greater percentage of the time than will 
Republican senators.  In the analysis ahead we will measure a senator’s political 
party affiliation with what political scientists refer to as a “dummy” variable (i.e., 
can only take on two values – in this case Democratic senators are coded “1” and 
Republican senators “0”).  This variable appears as “party.” 
 As state economic self-interest might be a factor in why senators vote in 
the manner they do, a reasonable third hypothesis would be that the higher the 
median income level in a state (i.e., the wealthier the state) the less likely the 
senator will vote in favor of tax changes where over 50% of the benefits go to 
households at, or below, the median income.  In the analysis ahead, state median 
income is in thousands of dollars (i.e., if the computer reads a score of 35.2 it 
means in that particular state half the households had incomes greater than 
$35,200 and half the households had incomes less than $35,200).  This variable 
appears as “medinc” (for median income). 
 Before discussing techniques for testing our hypotheses, let’s review 
some concepts from the early reading assignments that our important to 
understanding the data we will be working with (and will be covered on the final 
examination).   
 First, what type of research design is used to collect the data?  Reviewing 
pages 5-7, we recall that in an experimental research design the researcher can 
set the levels of the independent variables.  In our current situation that would 
require the research to be able to adjust how liberal each senator is, change their 
party affiliation and change the amount of income the median household earn in 
each of the 50 states.  Obviously, I can’t do any of these things (e.g., inject a 
senator with a serum to increase their conservatism).   Therefore, as is typically 
the case in political science, economics and sociology, we are using a 
nonexperimental research design.   In some instances (e.g., media studies) the 
researcher can set the level of at least some of the independent variables (e.g., 
determine the order in which the viewer see a series of news reports and/or how 
a particular event is described), but this is relatively rare in political science.  
 Second, what is the “unit of analysis”?  From page 13 we know that the 
“unit of analysis” is what we collect data on.  It is not a variable.  For example, 

the unit of analysis is not tax, scons, party or medinc.  Since we are collecting 

data on individual senators, a senator is the unit of analysis.  Not, the U.S. Senate 
as a whole, but rather an individual senator.  Suppose our research question 
were: Why did the Senate pass, or not pass, a particular bill?  In this case the unit 
of analysis would be the U.S. Senate because we would be examining the 
behavior of the Senate collectively (e.g., Why were there more “yes” votes than 

“no” votes?).   However, that is not what we are doing in the current analysis.  We 

are not trying to explain why a particular tax bill was either passed or defeated.  

Rather, we are trying to explain why individual senators voted as they did on tax 
legislation (regardless of whether the legislation passed or was defeated).  
Therefore, we collect data on individual senators.    
 Since one of the variables, state median household income, is collected on 
states I could understand you thinking that a state is the unit of analysis.  
However, this wouldn’t be correct.  Each senator represents one state. We are 
interested in the median income of the senator’s constituents, which happens to 



be a state.  If senators did not represent states then we would need an income 
measure of whatever their constituency was.  Thus, it’s coincidental that a 
senator’s constituency consists of a state.  Our interest in senators, not states.  
Therefore, a senator is the unit of analysis.      
 Third, what is the level of measurement of each of the variables?  Two of 
the four variables (tax and scons) are percentages.  From pages 11-12 we know 
that a percentage is a ratio level measure because it meets all the criteria.  The 
scores on a percentage variable form a continuum from highest to lowest (i.e., 
58% indicates more of the trait being measured than does 57%).  Additionally, 
there is an equal interval between the scores (i.e., the difference between 58% 
and 57% is the same as the difference between 93% and 92%).  Furthermore, a 
score of 0% indicates the absence of the trait being measure (i.e., a score of 0% 
on tax indicates that the senator never voted in favor of the interest of those with 
incomes at, or below, the median income).  Therefore, a percentage variable 
meets all the requirements of the highest level of measurement, the ratio level.   
 Since state median family income meets all of these same criteria (e.g., 
$12,000 is greater than $11,000, the difference between $12,000 and $11,000 is the 
same as the difference between $11,000 and $10,000 and a score of “0” would 
indicate that the median – or middle – household had no income) it is also a ratio 
level measure.   
 The last variable, party affiliation, is more difficult to classify.  Since there 
are only two categories of responses (i.e., 0 and 1) it is difficult to determine 
whether is an equal interval between all categories.  By definition there is if you 
only have two categories.  But, it’s not all that reassuring.  Additionally, there 
may, or may not, be a continuum.  We could make a good case that if Republican 
senators are scored as “0” and Democratic senators scored as “1” then the 
continuum is in terms of increasing liberalism (i.e., going from 0 to 1 means a 
move in a liberal direction).  Perhaps.  It would be an easier assessment if there 
were more possible categories of responses.      
 As a “first look” at our data let’s look at some of the descriptive statistics 
we examined earlier in the semester.   The statistical package we will use, Stata, 
is probably the most commonly used statistical package political scientists.   
Previously (pages 17-24) we discussed measures of central tendency (e.g., the 
mean, median and mode) and dispersion (e.g., range and standard deviation). 
The Stata output immediately below shows these statistics for our data. 
 
    Variable |       Obs        Mean    Std. Dev.       Min        Max 
-------------+-------------------------------------------------------- 
         tax |       100       46.54    28.73193          7         97 
       scons |       100       35.11    31.24258          0        100 
       party |       100         .62    .4878317          0          1 
      medinc |       100       9.205    1.524174        6.1       12.4 
 

 All the entries in the “Obs” column are 100 because we have data on all 
100 senators for each variable.   The mean score for tax, 46.5 means that the 
average senator supported tax changes primarily benefiting households with 
incomes at, or below, the median household 46.5% of the time.  This also means 
that the average senator supported the economic interest of households with 
incomes above the median 53.5% of the time (100 - 46.5 = 53.5).   Immediately to 
the right of the mean on the tax variable, 46.5 is the standard deviation of 28.7.   



 Previously, I mentioned that a very useful way to interpret the standard 
deviation is in relation to the mean.   Additionally, as mentioned in that same 
discussion, if the standard deviation is at least 50% of the size of the mean 
(which it is in this instance because 2 x 28.7 = 57.4 which is greater than the mean 
of 46.5 – i.e., the standard deviation must be at least half as large as the mean) 
then the mean was obtained by scores quite different than the mean.  For 
example, if we had only two senators and one scored 52 while the other scored 
48 they would have a mean of 50 but both scores would be quite similar to the 
mean.  If so, there is little dispersion of scores (i.e., the scores tend to be 
concentrated close to the mean).  However, a mean of 50 for two senators could 
also result for one senator scoring 100 and the other senator scoring 0.  This is 
why we like to know the standard deviation: it gives us a good idea how 
concentrated, or dispersed, the scores are.  Concerning the variable tax, since 
the standard deviation is over 50% of the size of the mean it tells us that scores 
very different from 46.5 averaged to 46.5 (e.g., 90, 72, 25, 10, etc.) rather than the 
mean of 46.5 occurring because the bulk of the scores were close to the mean 
(e.g., 52, 44, 49, etc.).  This tells us a lot!  It means that there is much 
disagreement on one of the most important policy areas: taxation.  
 To the right of the standard deviation you see “min” (the minimum or 
lowest score) and “max” (the maximum or highest score).   Previously, we 
learned that the difference between the highest and lowest scores is called “the 
range.”  So, the range for tax is 86 (93 - 7 = 86).  Given that the total possible 
range of the scale is 100 (i.e., from 0 to 100), this is a pretty high range.  The fact 
that the standard deviation was well over 50% of the size of the mean meant that 
we were likely to have a high range.  Since the range is equal to 86% of the 
possible difference in the scores (i.e., the scores range from 0 to 100 and 86 is 
86% of 100), the range is large relative to the width of the scale.    
 Before leaving this discussion of descriptive statistics, let me mention how 
the mean on tax was calculated.  Each senator had the opportunity to vote 76 
times on the particular tax legislation I examined.  Each senator’s tax score was 
the percentage of times they voted in the interest of those households at, or 
below, the median income.  Realistically, some votes shifted more money 
between income groups than other votes.  Unfortunately, the Congressional 
Budget Office did not provide estimates about how much money each vote 
entailed.  Therefore, all votes were treated as equal.   
 Here is something important to keep in mind about how the mean for state 
median household income (medinc) is calculated: all states are treated the same. 
Thus, the computer added up the median household income in each state and 
divided this total by 50 (i.e., the number of states). This means that each state 
had an equal impact.   Since the smaller states tend to be poorer, the mean of the 
50 states is likely lower than if the value of each state’s median income was 
weighted by the size of the state’s population (i.e., if California has 8 times the 
population of Ohio then California’s median household income would “count” 8 
times as much as Ohio’s median household income).   Looking at the previous 
page, you see that the mean on median income is 9.2.  Since the data are in 
thousands of dollars this means that the average state had a median household 
income of $9,200.  This figure is so low because the data are from the 1970 
census.  Currently, the median household income in the United States is around 



$50,000.   After adjusting for inflation, the median household income is higher 
today than in 1970, but not nearly as much as the difference between $9,200 and 
$50,000 suggests.    
 As mentioned previously, once we have selected the dependent variable (in 
this case the percentage of times each senator votes in favor of tax changes 
where over 50% of the benefits go to households earning at, or below, the median 
income) and the independent variables (a senator’s political philosophy, party 
affiliation and the median income in the state they represent) likely to explain 
variation (i.e., some senators support lower income households on 90% of their 
votes on tax changes while others support lower income households on only 20% 
of their votes on tax changes – hence “variation”), we need a statistical 
procedure that will tell us the amount of impact that each independent variable 
has on the dependent variable.   
 Earlier in the semester (pages 30-40 of this reader) you read about cross 
tabulation and measures of association.  Let’s apply those approaches to trying 
to answer the fundamental question: How much impact does each of the 
independent variables have on the dependent variable?  I will first try to answer 
this question using cross tabulation.  Read the second paragraph on page 37 

(i.e., “First, cross tabulation …”) before continuing.     

 In a cross tabulation table a “cell” represents one possible combination of 
scores on the variables used in the analysis.  In our situation, a cell might 
represent a senator who scored 83 on “scons” (i.e., is rather conservative), who 
was a Republican (i.e., score “0” on “party”), represented a state whose median 
household income was $41,511 and who supported households making at, or 
below, the median household income 17% of the times they voted on tax 

legislation.  If any of those scores change then we need another cell.  For 

example, since it is possible for a senator to score 83 on scons, be a Republican 
(i.e., score “0” on party), represent a state whose median household income is 
$41,511 (i.e., all three scores identical to the first senator) but support tax 
changes primarily benefiting households with incomes equal to, or less than, the 
median income 16% of the time (instead of 17% as with the first senator) we need 
another cell to represent this second possible combination of scores.   

 We need an additional cell for each possible combination of scores even 
if there are no senators who have this combination of scores.  For example, since 

a score of “0” on scons would mean the senator had no conservatism (i.e., was a 
liberal as the scoring mechanism would allow) no Republican senator is likely to 
score “0” on scons.  However, a cross tabulation table would still need to 
construct a cell to represent a possible set of scores for such a senator (e.g., a 
Republican senator who scored “0” on scons, represented a state with a median 
household income of $35,917 and voted in favor of households with incomes 
equal to, or less than, the median income 12% of the time).  The total number of 
cells in a cross tabulation table is equal to the product (multiplication) of the 
number of categories of responses of the variables.  Since state median 
household income can take on a virtually infinite number of values, I can’t 
calculate how many cells our analysis would take.  However, if we only use the 
variables “scons” (101 possible scores – 0 plus 1 through 100), “party” (2 
possible scores – 0 and 1) and “tax” (101 possible scores – 0 plus 1 through 100) 
we would need a cross tabulation table containing 20,402 cells (101 x 2 x 101 = 



20,402).  Needless to say this would be a monstrosity!  Our statistical package, 
Stata, won’t produce such a table.   
 Even if Stata would generate such a table, think of what this would mean 
for significance testing.  Read the second paragraph on page 38 (i.e., “Second, 

even if …” ) before continuing.  Suppose we have only one senator who is a 

Republican, has a conservatism score of 93%, whose state has a median 
household income of $11,411 (in 1970) and voted in favor of tax changes 
primarily benefiting households with incomes at, or below, the median 11% of the 
time.  Applying the second paragraph on page 38 to our situation, this would be 
analogous to flipping a coin one time and trying to determine if the coin is 
biased.  If the coin comes up heads, what should we conclude?  Unless the coin 
landed on it’s side, it would have to have come up either heads or tails.  One flip 
is simply too little evidence to draw any firm conclusion as to whether, or not, the 
coin is biased in any particular direction (i.e., toward heads or tails).   In our 
current situation, we need a statistical technique which preserves the sample size 
(i.e., is based on all 100 senators) rather than an approach which sub-divides the 
sample into so many pieces that there are very few senators in each possible 
outcome (i.e., one particular set of scores on all the variables).  
 A proponent of cross tabulation could reply that a remedy to this problem 
is to reduce the number of cells.   For example, if we converted tax and scons 
from percentages (i.e., from a range of 0 to 100) into three categories each (i.e., 
0%-33% = 1, 34%-66% = 2 and 67%-100% = 3) we would have reduced the number 
of cells dramatically.  True.  However, conversion comes at a high price: we lose 
all the information within each of the new categories.  For example, under this 
revised scoring system, a senator whose tax score was 7% (i.e., only voted 7% of 
the time in the interest of those with incomes at, or below, the median) would 
receive the same score (1) as would a senator whose tax score was 33%.  These 
senators behaved very differently but received the same score.  That’s not good 
measurement.  We should be trying to use all the information we have rather than 
omitting information we already possess.  Additionally, even if we used this 
revised scoring system for the percentage variables and converted state median 
household income into 3 categories (e.g., high, medium and low state median 
household incomes) we would have three variables with three categories each 
(tax, scons and state median household income) and one variable with two 
categories (party) resulting in a cross tabulation table with 54 cells (3 x 3 x 3 x 2 = 
54).  The table would still be much too large and wouldn’t tell us the precise 
magnitude of the relationships between the variables (i.e., how much does each 
additional percentage point in a senator’s degree of conservatism impact their 
degree of support for tax changes primarily benefiting households with incomes 
at, or below, the median).    
 The number of cells, 54, would be high enough to likely cause the user of 
cross tabulation to reduce the number of independent variables.  For example, if 
you cross tabulated the revised scons and tax variables you would have only 9 
cells (3 x 3 = 9).   However, as you will see shortly, this is a terrible solution.  The 
impact of one independent variable on the dependent variable often changes 

when other independent variables are included.  The impact of a senator’s 

conservatism on their support for tax changes primarily benefiting low and 
moderate income households would likely change if we included the senator’s 



political party affiliation and their state’s median household income in the 

analysis.  Using conservatism as the sole independent variable precludes such a 

possibility and means that we are likely to obtain a less valid measure of the 
impact of a senator’s conservatism on their votes on tax legislation than we 
would if we had the other two independent variables (party and state median 
household income) in the analysis.  
 Up to the mid-to-late 1970s political scientists often used simple methods 
such as cross tabulation as the primary method of statistical analysis.  
Frequently a cross tabulation table was supplemented with a measure of 

association.  It would be a good idea to reread pages 34-37 before continuing.  

Of the measures of association discussed previously (pp. 34-37), correlation 
would be the best choice to use because it requires interval or ratio level data 
(i.e., unlike gamma or Kendall’s tau the calculation procedure for correlation 
makes use of the fact that there is an equal mathematical interval between 
adjacent categories – e.g., that the difference between 19% and 20% is the same 
as between 72% and 73% - that both interval and ratio level data possess).  The 
correlation between scons and tax is -.80.  Using the interpretation table on page 
37, a -.80 correlation represents a very strong negative association between a 
senator’s conservatism and their degree of support for tax changes primarily 
benefiting low and middle income households (i.e., the more conservative the 
senator the lower their support for tax changes primarily benefiting low and 
middle income citizens).  A correlation of + or - .80 is very strong.  Since the 
strongest possible correlation is +1.0 or -1.0, -.80 is 80% as strong as the 
correlation could have been.  Keep in mind that a correlation of -.80 is of identical 
strength with a correlation of .80.  Only the direction (positive or negative) is 
different.   
 Unfortunately, the -.80 correlation between a senator’s conservatism and 
their support for tax changes primarily benefiting middle and low income 
households is a bivariate correlation (i.e., between these two variables alone).  As 
previously discussed, the impact of one independent variable on the dependent 
variable is likely to change if we have additional independent variables in the 
analysis.  In order to examine this, I asked Stata to provide a partial correlation 
between conservatism and support for tax changes primarily benefiting middle 
and low income households.  A partial correlation removes the impact of the 
other independent variables.  Put another way, the partial correlation between 
conservatism and support for middle and low income households on tax 
legislation is answering this question: if two senators had the same party 
affiliation (e.g., both Republicans) and the median household income in their 
states were the same (e.g., both $11,400 in 1970), what is the relationship 
between their conservatism scores and their support for tax changes primarily 
benefiting middle and low income households?  The partial correlation between a 
senator’s conservatism and their support for tax changes primarily benefiting 
middle and low income households is -.65.  Notice while the direction of the 
relationship remains “negative,” the relationship is not quite as strong as when 
we did not use the senator’s party affiliation and state median family income (-.65 
vs. -.80).  Now you see why we want to use all the independent variables that 
theory suggests we should use: the results change.  The partial correlation 
represents a more valid assessment of the relationship between a senator’s 



conservatism (i.e., scons) and their support for tax changes primarily benefiting 
middle and low income households (i.e., tax) than either the cross tabulation 
analysis or the correlation analysis.  However, as the diagram on page 40 makes 

clear, the partial correlation does not provide us with an assessment of the 

magnitude of the relationship between a senator’s conservatism and their 

support for the tax changes primarily benefiting middle and low income 
households.  What we really want to know is the answer to a question such as the 
following: after removing the impact of all other independent variables theory 
suggests, each one percentage point increase in a senator’s conservatism is 
associated with what percentage point decrease in their support for tax changes 
primarily benefiting middle and low income households?   

 As the figure on page 40 vividly shows, the strength of the association 

between two variables does not tell us the magnitude of the association 

between two variables.  Think back to the example on page 40.  A person’s 
education and income could be very strong correlated but the impact of each 
additional year of education on someone’s income could be rather small.   As the 
diagram on page 40 clearly shows, a correlation of .70 between a person’s 
education and their income would, since it is positive (i.e., .70 and not -.70), tell 
us that the more highly educated a person became the higher their income.  
However, does each additional year of education, on average, increase 
someone’s annual income by $1,000, $7,500, $20,000 or some other amount?  The 
correlation between a person’s level of education and their income cannot tell us 
the answer because it only tells us the strength and not the magnitude of the 
association.   
 In order to obtain the magnitude of an association between variables we 
need to use regression.  Since theory almost invariably suggests that a 
dependent variable is influenced by more than one independent variable, the 
magnitude of the association between a particular independent variable and the 
dependent variable is likely to change if the other independent variables are 
included in the statistical analysis, the bulk of contemporary quantitative 
research in political science uses multiple regression (i.e., regression with more 
than one independent variable) or a similar technique (e.g., probit, logit, cox 
regression, etc).   
    The most straightforward approach to discussing multiple regression is 
to display the multiple regression printout for our model and interpret it. 
Remember that our model seeks to explain why senators vary in the percentage 
of times the vote in favor of the interest of households with incomes equal to, or 
less than, the median household income (i.e., “tax”).  From the discussion on 
pages 60-61, three independent variables that might logically influence how 
frequently a senator would vote for tax changes primarily benefiting households 
with incomes equal to, or less than, the median income are: (1) the political 
philosophy of the senator (scons); (2) the party affiliation of the senator (party); 
and (3) the median income of the state the senator represents (medinc).  The 
Stata multiple regression output for out model appears immediately ahead. 
 
 
 



      Source |       SS       df       MS              Number of obs =     100 
-------------+------------------------------           F(  3,    96) =   65.44 
       Model |  54886.5757     3  18295.5252           Prob > F      =  0.0000 
    Residual |  26840.2643    96  279.586087           R-squared     =  0.6716 
-------------+------------------------------           Adj R-squared =  0.6613 
       Total |    81726.84    99  825.523636           Root MSE      =  16.721 
 

------------------------------------------------------------------------------ 
         tax |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
       scons |  -.6447205   .0756005    -8.53   0.000    -.7947863   -.4946547 
       party |   11.20792   4.675335     2.40   0.018     1.927454    20.48839 
      medinc |  -.5600809   1.283164    -0.44   0.663     -3.10714    1.986979 
       _cons |   67.38277   15.11393     4.46   0.000     37.38186    97.38368 

 
 Probably the most important numbers in the above printout appear in the 
“Coef.” column.  “Coef.” Is an abbreviation for coefficient.  The coefficients tell 
the magnitude of the impact of each independent variable on the dependent 
variable after the impact of each other independent variable has been accounted 
for.  For example, the -.644 coefficient for “scons” is interpreted as follows: If a     
senator’ party affiliation and the median household income in the senator’s 
remain constant (e.g., the senator is a Democrat and remains a Democrat, the 
median household income is $41,357 and remains at $41,357), for each one 

percentage point increase in the senator’s conservatism score (e.g., the 

senator’s conservatism score increases from 57% to 58% - a 1% increase) the 
percentage of times the senator votes in favor of tax changes where 50%, or 
more, of the benefits go to households with incomes equal to, or less than, the 

median household income decreases (notice that the coefficient is -.644, not 

.644 – thus a negative association), on average, by approximately .6% (i.e., 6 
tenths of 1%, not 6.4% or 64%).  When interpreting coefficients, think of what is 
realistically possible.   If you interpreted the -.644 coefficient as meaning that a 
1% increase in conservatism is associated with a 64% decrease in support for 
egalitarian tax changes, this would mean that a 2% increase in conservatism (e.g., 
a senator increasing their conservatism from 59% to 61%) would result in a 128% 
decrease in support for egalitarian tax changes (2 x 64 = 128).  If true (which it 
isn’t) this small 2% point increase in conservatism would result in a decrease in 
support for tax changes primarily benefiting middle and low income households 
by more than the entire length of the scale (i.e., the scale is from 0 to 100 so a 
decrease of 128 would be greater than the entire span of the scale).  Such a small 
increase in conservatism producing such a correspondingly large decrease in 
support for tax changes primarily benefiting households with incomes equal to, 
or less than, the median isn’t plausible.  This is one reason you always want to 
pay close attention to how the variables are measured.   
 Nevertheless, the -.644 impact is large.  For example, if both party 
affiliation and state median household income of a senator remain the same, 
replacing a senator whose conservatism score is 10% (i.e., is rather liberal) with a 

senator whose conservatism score is 90% would decrease support for tax 
changes primarily benefiting households at, or below, the median income by 
approximately 55.5% percentage points (90 – 10 = 80 and 80 x -.644  = - 51.5 ).   
Political philosophy matters! 
  The coefficient for party affiliation is interpreted as follows: If a     
senator’ conservatism and the median household income in the senator’s remain 
constant (e.g., the senator has a conservatism score of 72% it remains at 72%, the 



median household income is $41,357 and remains at $41,357), replacing a 
Republican senator with a Democratic senator (i.e., going from a score of “0” on 
party to a score of “1” – remember that party affiliation is not measured in 
percentage terms – thus a “unit” of increase in political party affiliation is not a 
percentage point), the percentage of times the senator votes in favor of tax 
changes where 50%, or more, of the benefits go to households with incomes 

equal to, or less than, the median household income increases (notice that the 

coefficient is 11.207, not -11.207 – thus a positive association), on average, by 
approximately 11%.  Since party and conservatism are fairly strongly correlated  
(-.57 - thus Democratic senators are less conservative than Republican senators) 
in estimating the impact of a senate election in California the impact of party 
should be added to ideology.   
 Over the last 40 years, or longer, Democratic senate candidates are roughly 
80%, less conservative than Republican candidates.  Therefore, the replacement 
of a Democratic senator with a Republican senator in California would likely 
reduce support for tax changes primarily benefiting households with incomes 
equal to, or less than, the median household income by approximately 66% (the 
80 points more conservative the Republican candidate is than their Democratic 
opponent would lower support by roughly 55% and the separate impact of being 
a Republican further reduces support by an additional 11%| 55% + 11% = 66%).   
Elections matter! 
 The coefficient for state median household income is interpreted as 
follows: If a senator’s conservatism and party affiliation remain constant (i.e., the 
same - the senator has a conservatism score of 72% it remains at 72% and the 
senator is, and remains, a Democrat) for each $1,000 increase in median 
household income in the senator’s state (remember from page 60 that state 

median household income is measured in thousands of dollars, not dollars – 

thus a one unit increase in state median household income – i.e., instead of 34.2 
the computer reads a score of 35.2 - is an increase of $1,000, not $1– always pay 
close attention to the units of measure), the percentage of times the senator 
votes in favor of tax changes where 50%, or more, of the benefits go to 
households with incomes equal to, or less than, the median household income 

decreases (notice that the coefficient is -.560, not .560 – thus a negative 

association), on average, by approximately .5% (i.e., 5 tenths of 1% or one-half of 
1%, not 5.6% or 56%).   
 As with the previous results, the finding for state median household 
income is important.  While the negative coefficient is what we expected (i.e., the 
wealthier the state the less supportive a senator from that state is of tax changes 
primarily benefiting those with incomes equal to, or less than, the median 
household income), the magnitude of the impact across the United States is 
small.  On the bottom of page 62 notice that the highest state median household 
income is $12,400 (12.4 in the “max” column on page 62) and the lowest score is 
6.1 (see the “min” column on page 62).  This is a difference of $6,300 ($12,400 - 
$6,100 = $6,300).   However, holding both a senator’s political philosophy and 
party affiliation constant, going from representing the wealthiest state in the 
union (i.e., the state with a median household income of $12,400 in 1970 dollars) 
to a state with a median household income of only $6,100 result in only a 3.5% 
reduction in support for tax changes primarily benefiting households with 



incomes equal to, or below, the median.   For example, transplanting a senator 
from the wealthiest state in the United States in 1970 (e.g., California or Alaska) to 
the poorest state (Mississippi) would only result in a decrease in support for tax 
changes primarily benefiting middle and low income groups by approximately 
3.5%.  Conversely, the replacement of Democratic senator from California with a 
Republican senator from California would reduce support by approximately 66% 
(see previous calculation), or about 19 times as much (66/3.5 = 18.85).  Thus, 
political philosophy and party affiliation are much more important than state 
economic self-interest.  That tells you a lot about how our political system 
operates. 
 The data in this study are actual, not hypothetical, data.  This was the 
United States Senate in action.  The questions the methods in this reading 
assignment are used to answer are “big” questions.   When we examine the 
literature in international relations, comparative politics and public law, we will 
use these same statistical techniques to help answer “big” questions in those 
sub-fields of political science.     
 The final number in the coefficient column on page 68 is 67.382.  The is the 
coefficient for what is termed the “y intercept” (_cons stands for “constant”).  To 
keep the discussion short, let me mention that the value of the y intercept is the 
predicted value for the dependent variable if all the independent variables have a 
score of 0.  With our dataset this means the following: if a senator has a score of 
0 on conservatism (i.e., has no conservatism – thus, as liberal as a senator could 
be on our scale), is a Republican (i.e., scored “0” on party) and the median 

household income in the senator’s state is $0, then our results predict that this 

senator would vote in favor of tax changes primarily benefiting households with 
incomes equal to, or below, the median approximately 68% of the time.  As is 

often the case, the value of the y intercept is not of paramount importance to us 

because it frequently depicts a state of the world which is highly unlikely to 
occur.  For example, for a senator to score 0 on both conservatism and party 
affiliation means that a senator who has no conservatism (i.e., is as liberal as 
possible) would be a Republican.   Why would such a liberal senator be affiliated 
with the Republican party?   The short answer is, they wouldn’t!   Additionally, 
consider what a 0 score on state median household income means.  The only way 
a state could have a median household income of $0 would be if either half of the 
state’s households literally earned $0 or some households had negative incomes 
(Were they were paying their employers for the privilege of working for them?).   
Not only are any of these conditions extremely unlikely to occur, for the y 
intercept to be an accurate depiction of the state of the nation, they would all 
have to occur simultaneously! 
 As is frequently the case, the value of the y intercept is to use it in 
conjunction with “real world” scores on the independent variables to predict 
scores on the dependent variable.    Let’s try an example from our current study.  
Senator #1, former Democratic Senator Howell Heflin of Alabama, had the 
following scores on the variables we are using: scons  26; party 1; state median 
household income 7.4 and tax 54.  Thus, Helfin was a fairly liberal senator (a 
conservatism score of only 26%), a Democrat (i.e., “1” on party), represented a 
very poor state (median household income of $7,400 in 1970) and voted 54% of 
the time in favor of tax changes primarily benefiting households with incomes 



equal to, or less than, the median.   From the results on page 68 we know that the 
coefficient values for the independent variables are as follows: cons -.644; party 
11.207 and state median household income -.560.  To predict Helflin’s support for 
middle and low income groups on tax legislation we multiply each coefficient 
times Heflin’s score on that particular independent variable and add the y 
intercept (67.4).  Therefore, the calculation is: 
 
   67.4  +   (-.644) (26)  +  (11.207) (1)  +  (-.560) (7.4) 
 
which becomes:    67.4  +      (-16.744)   +     11.207       +    (-4.144) 
 
which becomes:    67.4   -        16.744     +    11.207        -       4.144 
 
 which    =     57.7  
 
 Thus, Heflin is predicted to support tax changes primarily benefiting 
households with incomes equal to, or less than, the median household income 
57.7% of the time.  Since Heflin actually voted in this direction 54% of the time 
(i.e., his score on “tax” is 54) our model’s prediction is “off” by 3.7% (57.7 – 54 = 
3.7).  That’s very, very good!  There are other senators in this study (who will 
remain nameless) for whom the predictions of our model were “off” by as much 
as 40%.  The primary use of the y intercept is to perform this type of calculation.  
 The prediction calculation immediately above is of tremendous importance 
in explaining more fully how the regression model works.  We now know that the 
prediction for Senator Heflin was “off” by 3.7%.  In statistical terminology the 
value of the error term, referred to as “e,” for observation #1 (in our case, Senator 
Heflin) is 3.7.  Since the formula for the value of “e” for a given observation is the 
actual score minus the predicted score, the value of “e” for Senator Heflin is – 3.7 
(i.e., 54 – 57.7 = - 3.7).   What the computer now does is to “square” this error 
value.  In symbols this would be e

2
.  For Senator Heflin the value of e

2
 is 13.69      

(-3.7 x  -3.7 = 13.69).  The computer now performs the same operation on the 
remaining 99 senators.  Thus, for each senator the computer generates a 
prediction, subtracts this prediction from the senator’s actual score on tax (i.e., 
the dependent variable) and squares the difference.   After performing this 
operation on all 100 senators, the computer then adds up the total of these 
“squared prediction errors.”   
 Now turn back to page 68 and look toward the top of the printout under the 
“SS” column.  If you look down the “SS” column and to the right of “Residual” 
(named for “error” – residue, hence residual – i.e., not accounted for by our 
independent variables) you should see the value 26840.2643.  Omitting the 
decimal and adding a comma, this value is 26,840.  What this value represents is 
the sum of the 100 (since we have 100 senators) squared error scores.  If you 
divided 26,840 by 100 the result is 268.4.  This means that for the average 
senator, the value of their “squared error” is 268.4.  Obviously, Heflin’s squared 
error score of 13.69 is much smaller than for the average senator.  Put another 
way, our model’s prediction was much less inaccurate for Senator Heflin than for 
the typical senator.   



 The values in the coefficient column (i.e., -.644 for scons, 11.207 for party,  
-.560 for state median household income and 67.382 for the y intercept) were 

chosen by the computer to minimize (i.e., obtain the lowest) total squared 

errors.  Put another way, if any of the values in the coefficient column were 

changed, the total of the squared prediction errors would be greater than 26,840. 

By basing the calculation of each of the coefficients on squared  errors, as 

opposed to the absolute size of the error, the assumption is that large errors are 
more “costly” than smaller errors.    
 For example, let’s say that the coefficients used by model 1 yield 4 
prediction errors of 1 each.  This would result in a total prediction error of 4.  
Since 1

2
 is also equal to 1, the total squared errors for model 1 is also 4.  Contrast 

this with the outcomes from model 2 using the same scores on the variables but 
different values for the coefficients: 4 predictions in which model 2 predicted the 
exact score on the dependent variable 3 times (e.g., the error for predictions 1-3 
was 0 because the model predicted the actual score on the dependent variable) 
but on the 4

th
 prediction model 2 made a prediction error of 4.  For model 2 the 

total squared prediction errors is 16 [i.e., 0 + 0 + 0 + (4)(4) = 0 + 0 + 0 + 16 = 16].  

The total prediction error is the same for both models (i.e., 4 since 1 + 1 + 1+ 1 = 

0 + 0 + 0 + 4 = 4).  However, the total squared prediction errors are 4 times as 

great for model 2 (16) as for model 1 (4).   According to the least (or lowest) total 
squared error principle, the one large error of 4, even when accompanied by 3 

perfect predictions, is less desirable than no perfect predictions but 4 errors of 1 

each.  Thus, a few large errors are less desirable than a larger series of smaller 
errors.  Therefore, the computer would report the coefficients from model 1, not 
model 2. 
 Hopefully, you remember the discussion of statistical inference from pages 
41-59 of this reader.  Remember the fundamental question of statistical inference: 
How likely are the results to be the product of chance?  Applied to the results in the 
coefficient column on page 68 this question could be translated into: How likely are 
we to obtain a coefficient value for conservatism as large as -.644 when the “true” 
impact of the coefficient for conservatism is .000?  If the true value of the coefficient 
for conservatism is .000 this would mean that an increase in a senator’s 

conservatism would have no effect on their voting on the percentage of times the 

senator votes in favor of tax changes mostly benefiting household with incomes 
equal to, or less than, the median household income.   Needless to say, this is an 
important question to answer.   
 As you read previously, if we reject the null hypothesis that a senator’s degree 
of conservatism has no impact on their support for tax changes primarily benefiting 
middle and low income households in favor of the alternative hypothesis that the 
more conservative the senator the less they will support tax changes primarily 
benefiting middle and low income groups (which is what the -.644 coefficient for 
senator conservatism indicates) when, in fact, a senator’s degree of conservatism 
has no impact on their voting on this legislation we commit a type I error (i.e., 
rejecting the null hypothesis when the null hypothesis is true).   Obviously, we would 
like to avoid such a mistake.     
 The results on page 68 tell us the probability that if we reject the null 
hypothesis the null hypothesis is actually true.  Remember from pages 26 & 28 



that if we have a normal distribution of scores, 95% of the scores will be within 
plus, or minus, 2 standard deviations of the mean.  Thus, if a group of scores are 
normally distributed, the mean of the scores is 50 and the standard deviation is 5, 
95% of the scores will be between 40 and 60 (50 – 5 – 5 = 40 and 50 + 5 + 5 = 60).  
Fortunately, by virtue of what is called the central limit theorem, if we could 
replicate (i.e., repeat the study with a different 100 senators) many times, the 
estimates of each coefficient would approximate a normal distribution.  If you 
turn to page 68 and look at the column to the right of the coefficient column (i.e., 
to the right of “Coef.”) you should see “Std. Err.”  This column contains what are 
called “standard errors.”    
 The relationship of the coefficient to the standard to which it is attached 
(e.g., the coefficient for scons of -.644 is “attached” to the standard error of 
.0756) is the same as the relationship of the mean to the standard deviation in a 
normal distribution: if we replicate the study 95% of the estimates of the 
coefficient will be within 2 standard errors of the reported coefficient.  Therefore, 
95% of the estimates of the coefficient for conservatism (-.644 is the only 
estimate we have) will be between -.794 (-.644 + .075 + .075 = -.794) and -.494        

(-.644 - .075 - .075 =  -.494).  Since .000 does not lie between -.794 and -.494 there 

is less than a 5% chance that coefficient for conservatism would be reported as   
-.644 when it’s “true” value is .000.  What we just did was to calculate what is 
termed a 95% confidence interval (i.e., 95% of the time the “true” value of the 
coefficient lies within this interval).  Turning to the regression results on page 68, 
notice that the entries in the furthest two columns on the right for “scons” show 
exactly this 95% confidence interval (-.794 to -.494) that we just calculated.   

 Reread paragraphs 2-3 on page 50 very carefully.  Given the results 

just presented we can say that since the null hypothesis (i.e., that the “true” value 
of the coefficient for a senator’s conservatism is .000) is true less than 5% of the 
time we will reject the null hypothesis and accept the alternative hypothesis that 
the more conservative the senator the less supportive they will be of tax changes 
primarily benefiting households with incomes equal to, or less than the median 
household income.            
 There is a much easier approach to determining whether, or not, a 
regression coefficient is statistically significant at .05 level (if we reject the null 
hypotheses there is a 5%, or less, chance that we are wrong – i.e., thus, a 5%, or 
less chance that if we reject the null hypothesis we commit a type l error – see 
paragraphs 2-3 on page 50).  If the absolute value (i.e., positive or negative) of 
what is referred to as the “t ratio”- which is the regression coefficient divided by 
it’s own standard error - has an absolute value of 2.0, or greater, the coefficient is 
statistically significant at the .05 level (just keep reading).  Let’s apply the t ratio 
calculation to senator conservatism.  From the immediately preceding paragraph 
we know that the coefficient for senator conservatism is -.644 and the standard 
error for the coefficient for senator conservatism is .075.  This result means that 
the t ratio for senator conservatism is -8.53 (-.644/.075 = -8.53 – differences due to 
rounding).  Since -8.53 has an absolute value greater than 2.0, we know that there 
is less than a 5% that the null hypothesis is true.  So, we will reject it.  If you turn 
back to the results on page 68 you should notice that to the immediate right of 
the “Std. Err.” column is the “t” column (for t ratio).  Notice further that the entry 
for “scons” in the “t” column is -8.53.    



 Returning to the results on page 68, notice that to the right of the t column 
is a column entitled “P>|t|.”  The “P” in the column title stands for “probability.”  
The > sign means “greater than.”  When combine with “P” the left side of the 
expression mean “Probability greater than.”  The expression |t| means the 
absolute (i.e., irrespective of positive or negative sign) value of the t ratio.  In the 
regression results for senator conservatism (scons) the entry in “P>|t|” column is 
0.000.  This means that since the t ratio has an absolute value of 8.53, there is 
less than a 1 in 1,000 (theoretically 0 – which is less than 1) chance that the null 
hypothesis is true.  Alternatively, you could say that given a coefficient value of    
-.644 and a standard error of .075, if we reject the null hypothesis (which we will) 
there is less than a 1 in 1,000 chance we will commit a type l error (rejecting the 
null hypothesis when the null hypothesis is true).  
 Looking at the t ratios for the senator’s political party affiliation (party) and 
the median household income in the senator’s state (medinc), notice that party is 
statistically significant at the .05 level (because 2.4 is greater than 2.0) while state 
median household income is not statistically significant at the .05 level (because 
-.44 has an absolute value less than 2.0).   
 Frequently political scientists want to know how well their model has 
performed.  In our case, this means how well do the senator’s conservatism, 
party affiliation and the median household income in the senator’s state explain 
the percentage of times the senator votes in favor of tax changes primarily 
benefiting households with incomes equal to, or less than, the median household 
income?  The results for the statistic R-squared will tell us the answer.  From the 
regression results on page 68, notice that the value of R-squared (often referred 
to as “R

2
”) is .6716.  The number is interpreted as follows: variation in the 

senator’s conservatism (i.e., all senators are not equally conservative), party 
affiliation and the median household income in the senator’s state explain 67% of 
the variation in the percentage of times a senator’s votes in favor of tax changes 
primarily benefiting households with incomes equal to, or below, the median 
household income.   
 To be judgmental, 67% is a fairly high percentage of the variation in the 
dependent variable to explain.  Thus, our model “works” pretty well.  Since we 
could explain 100% (or all) the variation in a senator’s support for tax changes 
primarily benefiting households with incomes equal to, or less than, the median 
household income, the R-squared of .67 means that 33% of the variation remains 
unexplained by the three independent variables we have.  Perhaps there are 
independent variables that theory suggests that have not been included in our 
model.  Alternatively, perhaps we have the correct independent variables but 
measurement error is reducing the percentage of the variation our model 
explains. 
 Fortunately, there is a rather intuitive method of understanding the logic 
behind R-squared.   If we have no independent variables and have to predict the 
percentage of times each senator will vote in favor of tax changes primarily 
benefiting households with incomes equal to, or less than, the median household 
income our best solution is to predict that each senator will score the mean value 
(in our case, 46.5 – see page 62, the mean value of “tax”).  In terms of how well 
our model performs, the question now becomes: does the inclusion of the three 
independent variables we have (senator conservatism, party affiliation and state 



median household income) produce more accurate predictions (or reduce the 
amount of our prediction errors) than we obtain by predicting the mean score for 
each senator?  Recall that Senator Heflin voted in favor of tax changes primarily 
benefiting middle and low income households 54% of the time.  Since the mean 
score for “tax” is 46.5, if it had not been for our knowledge of Senator Heflin’s 
scores on the independent variables (i.e., that he has a conservatism score of 26, 
is a Democrat and that the median household income in his state was $7,400 in 
1970) we would have predicted his score to be the mean value of 46.5.   
 However, based on Senator Heflin’s scores on the independent variables, 
we changed this prediction to 57.7 (see the computations on page 71).  If we  
predicted the mean score of 46.5 for Senator Helflin the difference between his 
actual score, 54, and our prediction, 46.5, is 7.5 (we subtract the predicted score 
from the actual score: 54 - 46.5 = 7.5).  However, by incorporating the knowledge 
of Senator Heflin’s scores on the independent variables, our new prediction, 57.7 
is closer to his actual score of 54 than the mean value (54 – 57.7 = -3.7 which has 
a smaller absolute value than 7.5).   Thus, knowledge of our three independent 
variables increased the accuracy of our prediction.    
 The “variance explained” interpretation of R-squared that I mentioned on 
the previous page is the standard interpretation of R-squared [i.e., variation in the 
senator’s conservatism (i.e., all senators are not equally conservative), party 
affiliation and the median household income in the senator’s state explain 67% of 
the variation in the percentage of times a senator votes in favor of tax changes 
primarily benefiting households with incomes equal to, or below, the median 
household income.].  Alternatively, we could say that the variation in senators’ 
conservatism, party affiliation and state median household income reduce the 
squared prediction errors (i.e., multiplying each prediction error times itself) 67% 
from what they would have been by predicting the mean score on the percentage 
of times a senator supports tax changes primarily benefiting households with 
incomes equal to, or below, the median.   
 Political scientists are often interested in the relative importance of the 
independent variables.  For example, we might ask: How important is a senator’s 
philosophy relative to their political party affiliation in explaining how often the 
senator supports tax changes primarily benefiting households with incomes 
equal to, or less than, the median household income?  If we look at the 
coefficient values on page 68, it is tempting to think that since the coefficient for 
party affiliation is 11.207 and the coefficient for conservatism is -.644 that party 
affiliation is approximately 17 times as important in explaining senator’s support 
for middle and low income households on tax legislation as the senator’s 
conservatism (11.207/.644 = 17.4).  As we will soon discover, this would be a 
serious mistake.  The reason we cannot directly compare the coefficient values is 
that the variables the coefficients are aligned with, party affiliation and 
conservatism, are measured on very different scales with vastly different means 
and standard deviations.   
 We faced a similar situation over pages 27-29 when we compared the Miller 
Analogies Test with the Graduate Record Examination.  The scores weren’t 
directly comparable because the tests have very different means and standard 
deviations.  Our solution, conversion to Z scores, was to subtract the mean score 
on the test from each student’s individual score and divide the difference by the 



standard deviation for that particular test.  This process was used to find how 
well a particular student did relative to the average on the test.    
 If we apply the logic of the Z score to the regression coefficients, we can 
find out how important each independent variable is relative to the other 
independent variables.  The process we use will produce what are called 
“standardized coefficients.”  Note the similarity to Z scores (which are often 
termed “standard scores”).   The formula is to multiply each coefficient on page 
68 (what are termed “unstandardized coefficients) by the ratio of the standard 
deviation of the independent variable the coefficient is associated with to the 
standard deviation of the dependent variable (just keep reading – it’s simple).  
 From page 62 we know that for senator conservatism (scons) the mean is 
35.11 and the standard deviation is 31.2.  Additionally, from page 62 we also 
know that the standard deviation of senatorial support for tax changes primarily 
benefiting households with incomes equal to, or below, the median is 28.7.   From 
page 68 we know that the coefficient for senator conservatism is -.644.  Putting 
those number into the formula I mentioned above results in a standardized 
senator conservatism coefficient of -.695 [-.644/(31.2/28.7) = -.644/1.08 = -.695].  If 
we apply the same formula to the other two independent variables, then we can 
compare one standardized coefficient with another and obtain the relative 
importance of the independent variables.  The array below provides some useful 
results: 
 
Independent                             Unstandardized                    Standardized 
Variable                                         Coefficient                          Coefficient 
 
Senator 
Conservatism                                   -.644                                    -.695 
 
Party Affiliation                             11.207                                      .190 
 
State Median Household 
Income                                             -.560                                     -.029   
 
 From the results in the standardized coefficient column we can see that 
senator conservatism is approximately 3.6 times as important in explaining 
senatorial support for tax changes primarily benefiting middle and low income 
households as is party affiliation (-.695/.190 = -3.65 – only absolute values matter 
here).   In thinking about senatorial conservatism and party affiliation consider 
what a one unit increase in each variable means.  For senatorial conservatism, a 
one unit increase is a one percentage point increase (e.g., from 38% to 39%).  
This is not much change.  However, the only unit of party affiliation would be in 
completely changing parties (i.e., changing from a Republican to a Democrat – 
i.e., 0 to 1 or vice versa).  A one unit change in party represents much more 
change than a one unit change in senatorial conservatism.  As in the case of 
senator conservatism and party affiliation, standardized coefficients are often 
quite different than unstandardized coefficients.  A “quick” method of roughly 
gauging the relative importance of the independent variables is to take a ratio of t 
ratios (just keep reading).  For example, using the absolute value of the t ratios 



for senator conservatism and party affiliation would predict that senatorial 
conservatism is approximately 3.6 times as important as party affiliation (from 
page 68: 8.53/2.4 = 3.55).  That’s pretty close to the actual figure of 3.65!  Since 
political scientists are typically most interested in the impact of an independent 
variable on the dependent variable, as opposed to the relative importance of the 
independent variables, they typically use unstandardized coefficients.      
 Karl Marx would probably be disappointed with our results.  Given an 
economic class warfare perspective, Marx would have thought that state median 
household income would have been the most important independent variable.  It 
is, by far, the least important.  Additionally, state median household income is the 
only independent variable that is statistically insignificant.  Thus, we can’t rule 
out the possibility that differences in state median household income have no 
effect on the percentage of times a senator votes in favor of tax changes 
primarily benefiting households with incomes equal to, or less than, the median 
household income.  
 If Marx was statistically oriented, he might raise the following point: the 
reason that state median household income is statistically insignificant is that 
the variation that it explains is also explained by the other independent variables. 
This is the multicollinearity problem that was previously discussed on page 7.   
To suggest a pictorial example, think of an eclipse.  If Marx’s variable, state 
median household income, is like the sun in an eclipse, it is being blocked from 
view (i.e., from having an impact on the dependent variable).   
 While it is difficult to correct for multicollinearity if we have it, it is easy to 
test for it.  First, we only worry about multicollinearity for statistically 

insignificant independent variables.  From the results on page 68, we know that 

the t ratios for both senator conservatism and political party affiliation have an 
absolute value greater than 2.0 (-8.53 for senator conservatism and 2.40 for party 
affiliation).  Thus, we do not need to be concerned about multicollinearity for 
either a senator’s conservatism or their party affiliation.  In order to see if senator 
conservatism and/or party affiliation are preventing state median household 
income from having a statistically significant impact on senatorial voting on tax 
legislation, we need to run another regression in which state median household 

income is the dependent variable and the senator’s conservatism and party 

affiliation are the independent variables.  The R-squared from this equation will 
tell us what percentage of the variation in state median household income is 
explained by a senator’s conservatism and their party affiliation.   The R-squared 
from this equation is .26.  Since only 26% of the variation in state median 
household income is explained by senatorial conservatism and party affiliation, 
Marx would not be justified in thinking that high multicollinearity is the likely 
reason state median household income is statistically insignificant in the results 
displayed on page 68.  
 Before abandoning Marx’s theory, let me mention one other possibility: the 
impact of state median household income on the percentage of times a senator 
votes in favor of tax changes primarily benefiting middle and low income 

households is indirect: state median family income effects a senator’s political 

philosophy (e.g., the poorer a state the more likely a senator from that state will 
adopt a liberal political philosophy and/or be a Democrat), and political 
philosophy and/or party, in turn, effect senatorial voting on tax legislation.  In this 



model, the impact of state median household income on senators’ voting on tax 
legislation would be through median household income’s impact on 
conservatism and party.  This is what is termed a causal model.  Since state 
median household income only explains about 10% of the variation in either a 
senator’s conservatism or party affiliation, there probably isn’t sufficient reason 
to convert to a causal model.  I should also mention that state median household 
income is negatively associated with senator conservatism (i.e., opposite what 
Marx would have thought, the wealthier the state the less conservative the 
senators the state elects).   So far, Marx doesn’t appear “to have an out”! 
 One remaining possibility for Marx is what is called an interactive model.  
In this model the impact of one independent variable on the dependent variable is 
affected by the level of another independent variable (just keep reading).   For 
example, it might be that the impact of state median household income on a 
senator’s support for tax changes primarily benefiting middle and low income 
households depends upon the philosophy of the senator.   Thus, perhaps more 
conservative senator’s almost entirely respond to the wealthy, regardless of how 
high or low the state’s median household income is where more liberal senators 
representing states with low median household incomes are very supportive of 
tax changes primarily benefiting middle and low income residents whereas more 
liberal senators from high median income states are much less supportive of tax 
changes primarily benefiting middle and low income residents.  In order to test 
this model we need to create an interaction term by multiplying a senator’s 
conservatism score times the median income of their state.  Just so this process 
is clear, let’s return to Senator Heflin.   From page 71, we know that Senator 
Heflin’s conservatism score is 26 and the median household income in his state 
(in 1970) is 7.4 (i.e., $7,400).  So, having the computer multiply these scores, the 
score on the newly created interaction term between senator conservatism and 
state median household income for Senator Heflin is 192.4 (26 x 7.4 = 192.4).   
 As with the analysis of multicollinearity and causal models, an interaction 
term is not helpful to Marx.  When the interaction term is included along with the 
three independent variables in the equation on page 68, the interaction term is 
not nearly statistically significant.  If the interaction term replaces state median 
household income (i.e., the independent variables become senator conservatism, 
party affiliation and the interaction term between senator conservatism and state 
median household income) the interaction term is not close to being statistically 
significant.  Marx is just having a rough time!  His probable response to this 
would be that a false consciousness is causing the poor to misperceive their self-
interest.  He might be right.   Many models in political science are interactive.  In 
class you will see several interactive models from international relations, 
comparative politics, public law and American politics.  Typically, the interaction 
terms will contain the variable names with an “x” (for multiplication) between 
them (e.g., conservatism x median income).   
 It is not uncommon for the dependent variable in a political science model 
to have only two or three possible responses.   For example, in the international 
relations literature the dependent variable is often whether or not a dispute ended 
in war (e.g., 1 = war occurred; 0 = war did not occur).   When the dependent 
variable has roughly 5, or fewer, possible responses regression is not an 
appropriate technique.   Fortunately there are techniques, such as probit and 



logit, which deliver the benefits of regression in situations where the dependent 
variable has few possible categories of response.  There will be several such 
analyses presented in class.    
 One of the goals of this course is that you can interpret basic statistics.  
Because multiple regression is the most fundamental statistical tool of 
quantitative research, expect several quizzes and the final exam to ask you to 
interpret multiple regression results.  A good way to prepare is to take the 
following practice quiz.  The multiple regression results appear immediately 
below.   After writing your answers, turn to the next page to compare your 
answers with the key. 
 

Practice Quiz on Multiple Regression 
  
 Interpret the following regression results where: 
 
Dependent Variable = the percentage of seats gained or lost by the president’s  

party in the House of Representatives (i.e., if the computer read a score of -
5 it would mean that the president’s party lost 5% of the seats in the House 
of Representative in the last congressional election – since there are 435 
seats, this would mean a loss of about 21 – i.e., 21 is about 5% of 435) 

 
Independent Variable #1 = percentage change in real income per capita (meaning  

that income data have been adjusted for inflation and calculated the 
change on a per person basis – so if the computer read a score of 1.5 it 
would be mean that after removing the effects of inflation, income per 
person increased one and one-half percent since the last congressional 
election) 

 
Independent Variable #2 = the percentage of the public that approves of the job  

the president is doing (i.e., if the computer reads a score of 38 it means 
that 38% of those surveyed approved of how the president was performing 
his job). 

 
Multiple Regression Results:      
 
 Y Intercept: -17.7 
 

Independent Variable #1: coefficient = 1.29; standard error of  
independent variable #1 = .29   

 
 Independent Variable #2: coefficient = -.25; standard error of independent  

variable #2 = .19   
 
R–square = .47 
 
 Interpret the above results and then look at the next page. 
 



Answers to Practice Quiz on Multiple Regression 

 

Y Intercept:  If the change in real income per capita is zero (i.e.,  

the average person gained or lost nothing) and zero percent of the public 

approved of the president’s job performance, the president’s party would be 

predicted to lose 17.7% of the seats (about 70 seats) in the next congressional 

election.  Note: the dependent variable is not the number of seats the president’s 

party has in the House of Representatives but the percentage change in seats 

from the last election.  So, -17.70 doesn’t mean a prediction that if change in real 

per capita income and presidential popularity are both 0% the president’s party 

would have -17.7% of the seats in the House.  Rather, it means that the president’s 

party would be predicted to lose 17.7% of the 435 seats in the House.  For 

example, if the president’s party had 50% seats after the last congressional 

election and lost 17.7% of the total seats in the next election they would then have 

32.3% of the total seats in the House of Representatives (i.e., 50% - 17.7% = 

32.3%).  Although not necessary, you could make this more informative by 

converting the percentages into seats.  Thus, the president’s party would go from 

approximately 218 seats (218 is approximately 50% of 435) to about 141 seats (i.e., 

141 is approximately 32.3% of 435).      

  

Independent Variable #1: If the president’s approval remained the same (e.g.,  

40% of the public approved of the president’s job performance and it remained at 

40%), for each one percentage point increase in real income per capita, on 

average, the president’s party would gain approximately 1.29% of the seats in the 

House of Representatives (i.e., about 5 seats – 5 is about 1.29% of 435).  Since the 

t ratio has an absolute value of over 2.0 (i.e., 1.29 is well over twice the size of .29) 

we reject the null hypothesis that the change in real income per capita has no 

effect on the change in the percentage of seats in the House of Representatives 

held by the president’s party since the null hypothesis is true less than 5% of the 

time. 

 
Independent Variable #2: If the change in real income per capita remained the  

same (e.g., it was running at 1% and remained at 1%) for each one percentage 

point increase in the percentage of the public that approves of  the president’s job 

performance, on average, the president’s party would lose (remember, it’s -.25 not 

.25) about one-fourth of one percentage point of the seats in the House of 

Representatives (since one-fourth of a percentage point of 435 is approximately 1 

seat, you could mention this in addition to one-fourth of one percentage point 

decrease and make the answer a bit more informative – not a requirement 

however).  Since the t ratio has less than an absolute value of 2.0 (i.e., -.25 is less 

than twice the absolute value of .19) we do not reject the null hypothesis that 

presidential approval is unrelated to the change in the share of seats the 

president’s party has in the House of Representative because the null hypothesis 

is true greater than 5% of the time. 

 

Interpretation of R-squared: Variation in the change in real per capita income and the  

president’s approval rating together explain 47% of the variation in the percentage 

change in seats in the House of Representative held by the president’s party. 

 


