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1 Transforming Schroedinger’s Time | ndependent Equation to Dimensionless Form

We assume a scalar particle (spin zero). Using ordinarguthie wave function)(x), for one dimensional problems, is
a solution of the eigenvalue equation

h?  d?

S (@) + (B - V(@) $(z) = 0 (L.1)

in which E is the energy of the particle in ergg;(x) is the potential energy in ergs, ands a length in centimeters.
The coordinate space wave functigiiz) is assumed to be normalized according to (integrating dweeregion in which
¥ (x) is nonzero)

/\w(w)P de =1, (1.2)

sincedx | (z)|? is (in the absence of any other information) the probabtlitgt the particle described hy(x) will be
found in the intervalz, = + dz), and the sum of the probabilities of mutually exclusive oates must add up to unity.

For Schroedinger’s time independent equation in 1D, we caally takey(x) to be a real function aof;, and from (1.2)
we see that the dimension ¢fz) is 1/y/cm.. Quoting Landau and Lifshitz, Quantum Mechanics, thirdses edition
reprinted 2003, p. 55,

Schroedinger’s equation for the wave functiohef stationary states is real, as are the conditions imposed
on its solution. Hence its solutions can always be takenalqTliese assertions are not valid for systems in
a magnetic field; it is assumed that the potential energy doedepend explicitly on the time: the system is
either closed or in a constant (non-magnetic) field).

The eigenfunctions of non-degenerate values of the eneeggudomatically real, apart from an unimportant
phase factor. ... The wave functions corresponding to theesiegenerate energy level need not be real, but
by a suitable choice of linear combinations of them we caragéobtain a set of real functions.

We assume there exists a quantityvith the dimensions afm., chosen for convenience, in terms of which we can define
a dimensionless coordinaie

Z=ua/L. (1.3)

We also assume there exists an enekrgy(with dimensions ofergs) associated with the potential energy in terms of
which we can define a dimensionless potential en&iy)

(@) = L2 (L4
and a dimensionless enerdy .
E = Vo (1.5)
We also define a dimensionless coordinate space wave fangtio)
V(@) = VLy(2), (1.6)
in terms of which we have the transformed Schroedinger'siggu
d2d1gf) +42 (B - V(@) $(@) =0, (1.7)

where

[2m L2V,
v = TO’ (1.8)
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and we have a normalization condition in termscaind«)(#):

/z/?(gz)? dz =1. (1.9)

The “uncertainty relation” is a condition on the product bé tuncertaintyAz in the position of the particle, and the
uncertaintyAp,. in the simultaneous component of the mechanical momentum of the particle:

Ax Ap, > g (1.10)
in which, for a propertyA,
AA=+/(AA)? (1.11)
and
(AAP ={(A- < A>)) = (A?) - < A>2. (1.12)
We define a dimensionlesscomponent of momentuig,
L
Dy = + Ty 1.13
Pa =3P (1.13)
in terms of which (1.10) becomes
AT Ap, > % (1.14)
The expectation value of?
o= [ (34) v (115
becomes
/1/1 (Z dx) P(Z) dz. (1.16)
When we can assumg(x) is real (most of the time) p, > is either zero or a pure imaginary number, since
h d
< Dz > /1/1 n T’Z) . (2.17)

But < p, > must be real, and thus we conclude it must also be zero. Fasistency, this implies that

/1/1(35) %SU) dr = 0. (1.18)

2 TheFinite Rectangular Potential Well: Energy L evels and Wave Functions

We assume a finite well such thet(z) = V; for < 0 and also forz > L > 0, while V(z) = 0for0 < = < L.
Transforming to dimensionless units as described in theigue section, we then ha\)[é(gz) = 1for z < 0 and for
& >1,andV (%) = 0for 0 < Z < 1. In the following, we drop the tildes, with — z, V (z) — V(z), E = E, py — pa,
andy(Z) — y(x), so we are seeking energy eigenvaliizand the associated energy eigenfunctighs) such that, ()
is a real continuous function satisfying the equation

2
@)+ (B V(@) y(w) =0 (2.2)

and such thay(x) — 0 asx — +oc in such a way that we can satisfy the normalization condition

/OO y(w)2 dr =1, (2.2)

—00

and we also satisfy the basic uncertainty relatonAp, > %
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UsingRgraphics methods, we can make a simple plot of the dimersiembctangular well (which now looks like a finite
square well), and add a hypothetical energy level (in red).

mygrid()
lines( ¢(0,1), c(0.3,0.3), lwd = 3, col = "red" )

> setwd("c:/k3")

> source("cp3.R")

> plot(0, type="n"xlim=c(-2,2),ylim=c(-2,2),xlab="x" Yylab="V(x)")
> lines( c(-2,0), ¢(1,1), lwd = 3,col = "blue" )

> lines( ¢(0,0), c(0,1), wd = 3, col = "blue" )

> lines( c(0,1), c(0,0), lwd = 3, col = "blue" )

> lines( c(1,1), c(0,1), wd = 3, col = "blue" )

> lines( c(1,2), c(1,1), wd = 3, col = "blue" )

>

>

which produces the plot

V(x)
0
|

Figure 1: Dimensionless Finite Well

2.1 Finite Well Analytic Solution

We first seek an analytic solution of the finite well problem.the regions in which/(xz) = 1, the solutions of (2.1)
which vanish for large values &f:| are

y(z) = Bieh®, 2 <0, (2:3)
and
y(z) = Ao e_klx, x>1, (2.4)
in which
=~vv1—-F, (2.5)

andB; and A, are constants.

The general solution in the region in whi¢h(z) = 0 can be written in the form
y(zr) = Asin(kx+9), 0<z <1, (2.6)

in which

k=~VE. (2.7)
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This last equation can be solved fbr

2
o % (2.8)
We can also then express in terms ofk:
ky =/ — k2. (2.9)
The required continuity of both andy’ implies the continuity of the ratig’/y. We have
/
@ _p r<o, (2.10)
y(z)
and .
@) _ e (2.11)
y(z)
and ,
V@) cot(ka+0), 0<z<l. (2.12)
y(x)
Then the continuity of//y atz = 0 implies
k k
tan(f) = — = ——. 2.13
And the continuity ofy’ /y atz = 1 implies
tan(k +6) = _kﬁ = —tan(d). (2.14)
1

We expand the left hand side of this last equation, usingdéeetity

_ tan(A) + tan(B)
tan(A + B) = T~ tan(A) tan(B)’ (2.15)

and use again (2.13) to get

(2K —+%)
k = —————= tan(k). 2.16
y g ) (2.16)
This equation will involve real numbers provided we have
0<k<n. (2.17)

We can search for values éfwhich satisfy both (2.16) and (2.17), which will then implgreesponding energy eigen-
values using (2.8). A graphical search can be achieved ltfingdhe left and right hand sides of (2.16) on the same plot
and looking for intersections.

2.1.1 Analytic Energies and Wave Functionsusing Maxima

Our functionkroot_plot(kkmin,kkmax,ymn,ymx) (available for use once the code fi®Vv.mac is loaded) is de-
signed to partially automate such a graphical search.

Frhs(k) := (float( (2 *k'2 - gam2) =tan(k)/2/sqrt(gam2 - k'2)) )$

kroot_plot(kkmin,kkmax, ymn, ymx) :=
( plot2d([kk, Frhs(kk)], [kk, kkmin, kkmax],
[y, ymn, ymx], [style, [lines,2]], [xlabel, "k"],
[legend, false], [ylabel, ™1,
[gnuplot_preamble," set grid"))$
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After loadingFW.mac, gam2is a global parameter which stands far, and in this code file we use = 50.

(%il) load(cp3);
(%o01) "c:/k3/cp3.mac"
(%i2) load(FW);
gam = 50 gam2 = 2500
h = 0.01, xdecay = 0.5, ypleft = 1.0E-8 ypright = 1.0E-8
(%02) "c:/k3/FW.mac"
(%i3) kroot_plot(1,49,0,60)$
plot2d: some values were clipped.

which produces the plot
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Figure 2: Graphical Search for k Roots

Placing the cursor over the intersections of the curves,esdlsat k roots occur approximately at values
k = 3.01, 6.03, 9.06,...

Fa(k) is a function, also defined iRW.mac, which is zero at these special valueskofAlso defined iktoE(k) which

convertsk to E.

Fa(k) := (float(k - (2 *k™2 - gam2) =tan(k)/2/sqgrt(gam2 - k'2)) )$

ktoE (kv) := (kv'2/gam2)$

This functionFa(k) (of one variable) can then be directly used with the core Maxfunctionfind_root
ground state energy0.

to find the

(%i4) Fa(2.9);
(%04) -3.2290071
(%i5) Fa(3.1);
(%05) 2.0655923
(%i6) kO : find_root(Fa,2.9,3.1);
(%06) 3.0206914
(%i7) EO : ktoE(kO);
(%07) 0.00364983
(%i8) plot_analytic(E0)$
E = 0.00364983
x_mean = 0.5
delx = 0.18802
ydy sum = -1.78676518E-16
delp = 2.9619274 delx *delp = 0.556902
number of nodes = 0
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which produces the plot of the normalized analytic groumatiestvave function with zero nodes.
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Figure 3: Analytic Normalized Ground State Wave Function

The functionplot_analytic(E) (see below) callsnalytic_ wf(E) (see code fil&w.mac), and the latter file cal-
culatesdelx , delp , x_mean, andydy sum. The calculated value gfdy_sum corresponds to the integral (1.18) which
should be zero.

The functionfind_root  also appears to find a spurious root at or ne& which is not a physical solution. The function

Fu(k) =k — @F -7 tan(k). (2.18)

N

is not a continuous function & =n%, n = 1,3,5,... wheretan(k) is not continuous, anfind_root  cannot be

29
trusted at such points. For example,

(%i9) Fa(1.55);
(%09) 1201.7787
(%i10) Fa(1.59);
(%010) -1298.109
(%ill) kOs : find_root(Fa,1.55,1.59);
(%011) 1.5707963
(%il2) Fa(k0s);
(%012) 4.07689764E+17
(%il3) EOs : ktoE(kOs);
(%013) 9.8696044E-4
(%i14) plot_analytic(EOs)$
E = 9.8696044E-4
Xx_mean = 0.700405
delx = 0.212493
ydy sum = 2.22044605E-16
delp = 6.6877608 +*(-1)"0.5  delx xdelp = 1.4210999 *(-1)"0.5
number of nodes = 0
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which produces the plot of a discontinuous zero node wavetitum
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Figure 4: Discontinuous Spurious Root Wave Function

Note also the calculation produced a purely imaginary védwelelp . Note also the large value &a(k0s) , which
should be a very small number close to a physical root.

The functionanalytic_wf(E) creates global analytic normalized wave functigmd(x) , yn2(x) , ynO(x) , and
yna(x) ( and also computes and prints analytic values\af, represented bgelx , and Ap, represented byelp ).

ynl(x) is the wave function for: < 0, yn2(x) is the wave function forr > 1, yn0O(x) is the wave function for
0 <z <1.yna(x) isthe wave function for alk, usable byplot2d , but not byintegrate , created by the line

yna(x) :=
(if x < 0 then ynl(x)
else if x > 1 then yn2(x)
else  yn0(x) ),

Ignoring normalization, one can write a continugi$z) as

yu(x) =sin(6) e ? 2<0, k=7VI-E
=sin(kz+9), 0<z<1, k=~VE
=sin(k+0)eM e M g >1.

Normalization then requires calculating

D= / v (z) d. (2.19)
and a normalized wave functiap,(z) is then
n(x) = . 2.20
Yn(z) D (2.20)
The functionplot_analytic(E) used above callanalytic_ wf(E) and nodes_analytic(ddx) , prints out the

number of nodes, and makes a ployoa(x) .

plot_analytic(E) :=
block ( [ddx : 0.001, xvL, ynL, ymn, ymx,
xmn: -0.25, xmx : 1.25, numer], numer:true,
analytic_wf(E),
xvL : makelist(x,x,0,1,ddx),
ynL : map(yn0, xvL),
ymn : floor( Imin(ynL) ),
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ymx : 1 + floor( Imax (ynL) ),

print(" number of nodes = ", nodes_analytic(ddx) ),

plot2d(yna(x), [x,xmn,xmx], [ylabel, "yna(x)"],[y,ymn,
[style,[lines,2]],[gnuplot_preamble,"set grid"]))$

ymx],

The functionnodes_analytic(dx)
analytic_wf(E)

counts the number of nodes implied by the funcyoao(x) created by
. The count is naturally restricted to the regidor = < 1 and the argumentx is the step size used.

nodes_analytic ( dx ) :=
block( [num:0, xv:0, xnew, fl, f2, numer], numer:rue,
do (
f1 : ynO(xv),
xnew : xv + dx,
if xnew > 1 then return(),

XV

f2 :
if f1

ynO(xv + dx),
*f2 < 0 then num
1 Xnew),

D num + 1,

num)$

A function levels_analytic(kmax)

returns a list of analytic eigen energies related tda k = v+/E. The corre-

sponding eigenvalues éfare separated by roughly: = 3 and lie in the middle of the intervals, 5, n, 5], wheren; and
ny are adjacent odd integers with > n,. The ground state (zero node soln) corresponds=+£03.02,n1 = 1,ny = 3.

levels_analytic(kmax) :=
block( [ka,kb,kv,level:0, nmax, Elist :
nmax : ceiling(2
print(" nodes
print( " "),
/* make nmax an odd integer
if evenp (nmax) then nmax :
/= analytic kv using n
for j;1 step 2 thru nmax do (
[ka, kb] : bracket_basic( Fa,

* kmax/%pi),
E ",

I8

nmax + 1,
*pi/2 + 0.1 with n odd

numer], numer: true,

*/
*/
*%pi/2 + 0.1,

j 0.01, 0.005),

kv :

find_root( Fa, ka, kb),

Ev : ktoE(kv),

Elist : cons(Ev, Elist),

print( " " level,

level : level + 1),
reverse(Elist) )$

" Ev ),

Here is an example of the uselefels_analytic

(%il5) levels_analytic(20);
nodes E

0.00364983
0.0145973
0.032836
0.0583552
0.0911389
0.131165
0.178405
(%015) [0.00364983,0.0145973,0.032836,0.0583552,0.09
(%il6) E4 : %[5];
(%016) 0.0911389
(%i17) plot_analytic(E4)$

O wWNEO

E = 0.0911389

x_mean = 0.5

delx = 0.297122

ydy_sum = -8.32667268E-17

delp = 14.787571 delx delp = 4.3937127
number of nodes = 4

11389,0.131165,0.178405]
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which produces the plot
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Figure 5: Analytic Four Node Wave Functidii = 0.0911389

The functionlevels_analytic calls bracket_basic(func,x,dx,xacc) which looks for a sign change fanc ,

starting withx, and increasing by dx each step. If a sign change is found, then we back up to théopieev and search
with newdx value one half of the previous value.

bracket_basic(func,xx,dxx,xacc) =
block([ x:xx, dx:dxx,x1,x2,it:0,itmax:1000],
do (
it :oit + 1,
if it > itmax then (
print(" can't find change in sign "),
return([0, 0 1)),

X1l : X,
X2 : X + dx,
if debug then print(" it = "it," x1 = "x1," x2 = "x2," dx = ", d X),

if func(x1) *func(x2) < 0 then (
if abs(dx) < xacc then return([x1,x2]),
X X - dx,
dx : dx/2)
else x : x2))$

Here is an example usirmgacket basic  with func = sin

(%il8) [xa,xb] : bracket_basic(sin,3,0.01,0.001);
(%018) [3.14125,3.141875]

(%i19) xv : find_root(sin,xa,xb);

(%019) 3.1415927

Here is an example of locating the zero node ground state wédlufor the finite potential well problem usirfgnc = Fa
(see (2.18)).

(%i20) [ka,kb] : bracket_basic(Fa,1.6,0.1,0.05);
(%020) [3.0,3.025]

(%i21) kv : find_root(Fa,ka,kb);

(%021) 3.0206914
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2.1.2 Analytic Energies and Wave Functionsusing R

We can search for values bfwhich satisfy both (2.16) and (2.17), which will then implgroesponding energy eigenval-
ues using (2.8). A graphical search can be achieved bymmidtitie left and right hand sides of (2.16) on the same plot and
looking for intersections. Our functiokroot_plot(kkmin,kkmax,ymn,ymx) is designed to partially automate such
a graphical search.

Frhs = function (k) { (2 *k'2 - gam2) =tan(k)/2/sqrt(gam2 - k2) }
kroot_plot =  function (kkmin,kkmax, ymn, ymx) {
curve (Frhs,kkmin,kkmax, n=200, col = "red",lwd = 3,ylim = ¢ (ymn,ymx),
xlab = "k", ylab = ")
lines( c(kkmin,kkmax), c(kkmin,kkmax),col = "blue",lwd = 3)}

After loadingFW.R, gam2is a global parameter which stands #8r, and in this code file we use = 50.

> source("cp3.R")
> source("FW.R")
gam = 50 gam2 = 2500
h = 0.01, xdecay = 0.5, ypleft = 1e-08 ypright = 1e-08
> kroot_plot(1,49,0,60)
> mygrid()

which produces the plot
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Figure 6: Graphical Search for k Roots

Let's zoom in on the beginning of this plot and add a custord.gri

> kroot_plot(1,10,0,10)
> abline( v = seq(1,10,by = 1),h = seq(0,10,by = 1) )
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which produces the plot

10

10

Figure 7: Graphical Search for k Roots

Physically valid k roots occur roughly at values slightlygier thank = 3,6,9,.... The vertical red lines correspond to
values ofk = 7/2,37/2,... wheretan(k) both changes sign and has an arbitrarily large magnitude.ifftarsections

with the vertical red lines are not physically valid roots vee will see.

An function which should be zero at a physical root is caffa¢k) and we also definktoE(k)

, Which convertsk to E.

Fa = function(k) { k - (2 *k'2 - gam2) =tan(k)/2/sqrt(gam2 - k2) }

ktoE = function (k) k'2/gam2

This functionFa(k) (of one variable) can then be directly used witliroot

to find the ground state energy.

> Fa(2.9)

[1] -3.22901

> Fa(3.1)

[1] 2.06559

> kO = uniroot(Fa, ¢(2.9, 3.1), tol=1e-16)$root
> kO

[1] 3.02069

> EO = ktoE(kO)
> EO

[1] 0.00364983

> plot_analytic(EO)

E = 0.00364983

X_mean = 0.5

delx = 0.18802

ydy_sum = -1.78677e-16

delp = 2.96193 delx *delp = 0.556902
ymn = 0 ymx = 2

number of nodes = 0
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which produces the plot of the normalized analytic groumatiestvave function with zero nodes.
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Figure 8: Analytic Normalized Ground State Wave Function

The functionuniroot  also appears to find a spurious root at or neg which is not a physical solution. The
function
(2k* =77
2 /,YZ — k2
is not a continuous function & = n 5, = = 1,3,5,... wheretan(k) is not continuous, andniroot ~cannot be
trusted at such points. For example,

Fy(k) =k — tan(k). (2.21)

> Fa(1.55)
[1] 1201.78
> Fa(1.59)
[1] -1298.11
> kOs = uniroot(Fa,c(1.55,1.59),tol=1e-16)$root
> kOs
[1] 1.5708
> Fa(k0s)
[1] -3.01869e+16
> EOs = ktoE(kOs)
> EOs
[1] 0.00098696
> plot_analytic(EOs)
E = 0.00098696
X_mean = 0.700405
delx = 0.212493
ydy_sum = 1.11022e-16
delp = NaN delx *delp = NaN
ymn = 0 ymx = 2
number of nodes = 0
Warning message:
In sqgrt(delp2) : NaNs produced
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which produces the plot of a discontinuous zero node wavetitum
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Figure 9: Discontinuous Spurious Root Wave Function

Note also the calculation produced a purely imaginary védueelp , which R writes asNaN (not a number). Note also
the large value oFa(kOs) , which should be a very small number close to a physical root.

The functionanalytic_wf(E) creates global analytic normalized wave functigmd(x) , yn2(x) , ynO(x) , and
yna(x) ( and also computes and prints analytic values\af, represented bgelx , and Ap, represented byelp ).

ynl(x) is the wave function for: < 0, yn2(x) is the wave function for: > 1, ynO(x) is the wave function for
0 <z <1.yna(x) isthe wave function for alk, usable bysapply , but not bycurve , created by the line

yna <<- function (x) { if (x < 0) ynl(x) else if (x > 1) yn2(x) els e ynO(x) }

Ignoring normalization, one can write a continugi$z) as

yu(z) =sin(8)eM®, 2<0, ki=yVI-E
=sin(kz+4), 0<z<1, k=yVE
=sin(k+d0)eM e ™ g >1.

Normalization then requires calculating

D:/ Y2 (x) da. (2.22)
and a normalized wave functiap,(z) is then
n(T) = . 2.23
Yn(z) /D (2.23)
The functionplot_analytic(E) used above callanalytic_wf(E) and nodes_analytic(ddx) , prints out the

number of nodes, and makes a ployof(x) .

plot_analytic = function (E) {
ddx =  0.001
xmn = - 0.25
Xmx = 1.25
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analytic_wf(E)
xL = seg(xmn,xmx ,by = ddx)
yL = sapply(xL, yna)
ymn = floor( min(yL) )
ymx = 1 + floor( max (yL) )
cat (" ymn = "ymn,"” ymx = "jymx, "\n")
cat (" number of nodes = ", nodes_analytic(ddx), "\n" )
plot(xL, yL, type = "I', lwd = 3, col = "blue", xlab = "x",
ylab = "ya(x)",tck=1, ylim = c(ymn,ymx) ) }
The functionnodes_analytic(dx) , used above, counts the number of nodes implied by the tmgio(x) created

by analytic_wf(E)

. This function looks in the regiof < x < 1, using intervals of sizex.

nodes_analytic = function ( dx ) {

num = 0

xv = 0

repeat {
f1 = ynO(xv)
xnew = xv + dx
if  (xnew > 1) break
f2 = ynO(xv + dx)
if (f1 =*=f2<0) num = num + 1
XV = Xnew }

num }

A function levels_analytic(kmax) returns a list of analytic energy eigenvalues related toa k = v +/E. The
corresponding eigenvalues lofire separated by roughii: = 3 and lie in the middle of the intervals; 7, n2 5], where
n1 andno are adjacent odd integers withh > n;. The ground state solution corresponds te 3.02,71 = 1,no = 3.

levels_analytic = function (kmax)  {
rmax = 20
EL = rep(NA, rmax)
level = 0
nmx = ceiling(2 *kmax/pi)
#it make nmx an odd integer
if (is.even (nmx) ) nmx = nmx + 1
cat (" nodes E \n ")
cat (" \n "

#it analytic kv using n
for (j in seq(l, nmx, by=2) ) {
out = bracket_basic( Fa, ] *pi/l2 + 0.1,
kv = uniroot( Fa, out, tol = le-16)$root

Ev = ktoE(kv)

*pi/2 + 0.1 with n odd

0.01,0.005)

EL[ j] = Ev
cat (" " level, ", Ev, "\n")
level = level + 1}

EL[lis.na(EL)] }

Here is an example of the uselefels_analytic

> EL = levels_analytic(20)
nodes E

0.00364983
0.0145973
0.032836
0.0583552
0.0911389
0.131165
0.178405

o0, wWNEFE O
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> EL

[1] 0.00364983 0.01459726 0.03283598 0.05835517 0.091138 90 0.13116525 0.17840502
> E4 = EL[5]

> E4

[1] 0.0911389
> plot_analytic(E4)

E = 0.0911389
X_mean = 0.5

delx = 0.297122
ydy_sum = -8.32667e-17

delp = 14.7876  delx *delp = 4.39371
ymn = -2 ymx = 2
number of nodes = 4

which produces the plot

ya(x)
0

0.0 0.5 1.0

Figure 10: Analytic Four Node Wave Functiégh= 0.0911389

The functionlevels_analytic calls bracket_basic(func,x,dx,xacc) which looks for a sign change fanc ,
starting withx, and increasing by dx each step. If a sign change is found, then we back up to théopieev and search
with newdx value one half of the previous value. Note thabug = FALSE is set when loading the filew.R

bracket_basic = function (func,xx,dxx,xacc) {
X = XX
dx = dxx
it =0
itmax = 1000
anerror = FALSE

repeat {
it =it + 1
if (it > itmax) {
cat (" can't find change in sign \n")
anerror = TRUE
break}

x1 X
X2 X + dx
if ( debug ) cat (" it = "it," x1 = "x1," x2 = "x2," dx = ", dx, "\ n")
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if  (func(xl) *func(x2) < 0 ) {
if ( abs(dx) < xacc ) break
X = X - dx
dx = dx/2 } else x = x2 }

if (anerror ) c(0,0) else c(x1,x2) }

Here is an example usirgacket_basic ~ with func = sin

> out = bracket_basic(sin,3,0.01,0.001)
> out

[1] 3.14125 3.14187

> uniroot(sin,out,tol=1e-16)$root

[1] 3.14159

Here is an example of locating the zero node ground state wdkufor the finite potential well problem usirfgnc = Fa
(see (2.21)).

> out = bracket_basic(Fa,1.6,0.1,0.05)
> out

[1] 3.000 3.025

> kv = uniroot(Fa,out,tol = le-16)$root

> kv

[1] 3.02069

> Ev = ktoE(kv)
> Ev

[1] 0.00364983
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2.2 Numerical Runge Kutta Finite Well Solution

It is easiest to use Runge-Kutta methods for a case in whepatentiall’(x) is discontinuous at one or more values of
x. In this examplé/ (z) is discontinuous at = 0 andx = 1. The Runge-Kutta method automatically supplies the first
derivatives at the spatial grid points.

2.2.1 Numerical Energies and Wave Functionsusing Maxima

We use our homemadk4 routine for the Runge-Kutta integration. When the Fl&.macis loaded, a number of global
parameters are defined. The top the theHiemac has the lines:

/* FW.mac uses Runge-Kutta
for finite well.

dimensionless units

V =1for x <0and x> 1
V=0for0<x<l1

y'(x) + gam2  *(E - V(X)) *y(x) =0
gam2 = gam™2 = 2500

gam = 50 = sqrt(2 *mrL"2 *VO/ hbar™2)

x/

| * initial global parameters: */
( N : 100,
h : 0.01,
gam : 50,
gam2 : gam’2,
xdecay : 0.5, / = start yL1 integration at x = -xdecay */
[+ start yR integration at x = 1 + xdecay */
ypleft : 1le-8,
ypright : 1e-8,
print(*  gam = ",gam, " gam2 = ", gam2),
print(" h =", h, " xdecay = ", xdecay, ", ypleft = ",
ypleft," ypright = ", ypright))$

We integrate from a point = -xdecay chosen so that we can assug{exdecay) = 0  to the pointx = 0, thus
defining a gridxL1 of integration points, a lisgL1 of values ofy(z) at these grid points, and a lighL1 of values of
y'(x) at these grid points whefé = 1.

We assume an arbitrary small valysleft  for the first derivativey’ at this starting point. The resulting wave function,
the solution of a homogeneous equation, can be later naredglivhich will, in effect, amount to choosing the correct
initial first derivative at the left starting point.

The final value ofy andy’ thus generated become the initial valueg @ndy’ for integration through the region where
V =0,0 <z <1, thus generating a grixL2 of integration points, a lisfL2 of values ofy(z) at these grid points, and
alistypL2 of values ofy’(x) at these grid points whefié = 0.

The integration in the regiom > 1 is done by starting at a location= 1 + xdecay where we can assume= 0
and we again assign an arbitrary (but negative) first dévivatypright . We then integrate toward smaller valuesrof
until we reachr = 1. Since we are hence integrating in the direction in whichpitnesical solution is growing, we avoid
integration instability problems produced by small rouffidmd integration algorithm errors.

We then multiply the listyL1, ypL1, yL2, andypL2 by a factor which assures us that the final valug (af) produced
by the independent rightward and leftward integrationeeagt the matching point= 1. The value ofy(z) can be made
to agree at the matching point for any eneifgyHowever, the resulting wave function values will still bieabntinuous
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because the first derivatives will not agree at the matchaigtp

The crucial step, then, is to design a functibQF), say, that is zero (to within numerical errors) when thedees
agree at the matching point. We can then look for the locatadrsign changes if'( E) to locate the energy eigenvalues.

The first step needed, in order to be able to design such dadark(E) , is to design a functiowf(E) which uses Runge
Kutta methods to find a un-normalized wave function corradpw to a given total energy. Here is our code for such
a wave function integrator, as listedffv.mac.

[+ wf(E) creates * un-normalized *»  numerical wave functions
using Runge-Kutta routine rk4.
The wave functions are stored in global xL1, yL1,ypLl, xL2, y L2, ypL2, xR, YR, ypR .
Program also defines *+ global ** nleft, nright, ncenter
the global xL1 grid extends from -xdecay to O and
the global xL2 grid extends from 0 to 1 and
the global xR grid extends from 1 to 1 + xdecay

*/

wf(E) :=
block([ glr,gc, outl, fac, numer], numer : true,

if (E <0) or (E > 1) then (
print(" need 0 < E <1 "),

return(false)),
ncenter : N,
if not integerp(ncenter) then (
print (" ncenter = ",ncenter,” is not an integer"),
return(false)),
nleft : round(xdecay/h),
nright : nleft,
if wfdebug then print(" nleft = " nleft," ncenter = ",ncente r," nright = ",nright),
glr : gam2 =(E - 1), /% g(x) for x < 0 and x > 1 *[
gc : gam2 *E, / » gx) for 0 < x <1 */
if wfdebug then print(" glr = ",glr,” gc = ", gc),
/= construct xL1, yL1, and ypL1 for -xdecay < x < O */
outL : rk4(['y2, - glr = 'y1], ['yl, 'y2], [ O, ypleft], ['x, -xdecay, 0, h] ),

xL1 : take(outL,l1),
yL1 : take(outL,2),
ypL1 : take(outL,3),

/* construct xL2, yL2, and ypL2 for 0 < x < 1 */

outL : rk4(['y2, - gc * 'y1], ['yl, 'y2], [ last(yLl1), last(ypL1)], ['x, O, 1, h] ),
xL2 : take(outL,1),
yL2 : take(outL,2),
ypL2 : take(outL,3),

/*= construct xR, yR, and ypR for 1 < x < 1 + xdecay */

outL : rk4(['y2, - gir * 'y1], ['yl, 'y2], [ O, -ypright], ['x, 1 + xdecay, 1, -h] ),
xR : take(outL,l1),
yR : take(outL,2),
ypR : take(outL,3),

XR : reverse(xR),

YR : reverse(yR),

ypR : reverse(ypR),

if wfdebug then print(" yR(1) = ", first(yR)),
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fac : first(yR)/last(yL2),
if wfdebug then print(" fac = ",fac),

yL1 : fac =ylL1,
ypL1 : fac =*yplL1,
yL2 : fac =*yL2,
ypL2 : fac =*yplL2,

done)$

The second step needed to dedigB) is to create a functiody_diff() which returns a normalized difference of the
first derivativesy (z) — v () evaluated at the matching point= 1. We return this difference divided by the value of

y(z =1).

[+ dy_diff() uses global ypL2, ypR, and yR,
returns a normalized difference of derivatives
(yr'(y) - yr'(1) yRr(1)

x/

dy_diff() :=

block([dy_left, dy_right, numer],numer:true,
dy_left : last(ypL2),
dy_right : first(ypR),
(dy_left - dy_right)/abs(first(yR)) )$

For example,

(%il) load(cp3);
(%o01) "c:/k3/cp3.mac"
(%i2) load(FW);
gam = 50 gam2 = 2500
h = 0.01, xdecay = 0.5, ypleft = 1.0E-8 ypright = 1.0E-8
(%02) "c:/k3/FW.mac"
(%i3) wf(0.5);
(%03) done
(%i4) dy_diff();
(%04) 35.071714
(%i5) last(ypL2);
(%05) -0.00190471
(%i6) first(ypR);
(%06) -0.237432
(%i7) first(yR);
(%07) 0.00671558

Here, finally, is our code foF(E) :

/ = energy eigenvalue if global function F(E) = 0 .
F(E) calls Wi(E) then returns dy_diff(), but
returns false if E > 0.
*/

F(E) =
block( [ numer],numer:true,
if E<O0or E>1 then (
print(" in F(E), E = "JE," should be between 0 and 1 "),
return(false)),
Wi(E),
dy_diff())$

And here is an example of usifigE) to produce a rough graphical survey of the possibilities:
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(%i8) EL : makelist(e,e,0.1,0.9,0.01)$
(%i9) FL : map(F, EL)$

(%i10) plot2d([discrete,EL,FL],[xlabel,"E"],[ylabel, "F(E)"$

which produces the plot
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Figure 11: Crude Plot of F(E)

We can usé-(E) to search for energy eigenvalue candidates. We do this withaion bracket(func,x,dx,xacc)
which attempts to return two valuesfat whichfunc has the opposite sign.

the function F(E) or F1(k) which can return ’‘false’.

bracket looks for a sign change in func,
starting with xx, and increasing xx by dxx each step.

then returns [0,0], and if func returns false, then
bracket returns false.
*/

bracket(func,xx,dxx,xacc) =
block([f1,f2, x:xx, dx:dxx,xx1,xx2,it:0,itmax:1000],

do (

it @it + 1,

if debug then print(it),

if it > itmax then (
print(" can’t find change in sign "),
return([0, 0 1)),

xx1 @ X,

XX2 : X + dx,

if debug then print(" it = "it," xx1 = "xx1," xx2 =
f1 : func(xxl),
if not f1 then (

return(fl)),

f2 : func(xx2),

/= bracket is a modified version of bracket_basic, designed to

print(" in bracket, f1 = false , xx1 = "xx1, "

work with

If sign change is found, then we back up to the previous xx
and search with new dxx value one half of the previous value.
normally returns [ea,eb] or [ka,kb], but if can’t find chang

e in sign,

" xx2," dx

dx =", dx),

" dx),




2 THE FINITE RECTANGULAR POTENTIAL WELL: ENERGY LEVELS AND VAVE FUNCTIONS 23

if not f2 then (
print(" in bracket, f2 = false , xx2 = "xx2, " dx =", dx),
return(f2)),
if debug then print (" f1 = "f1," f2 = "/2),
if {1 *f2 < 0 then (
if abs(dx) < xacc then return([xx1,xx2]),
X @ X - dx,
dx : dx/2)
else x : xx2) )$

Here is an example of usingacket with the functionF(E) . This example produces the zero node ground state case,
and we plot the un-normalized wave function pieces prodigedi(E) .

(%ill) [ea,eb] : bracket(F,0.0005,0.0001,0.00005);

(%011) [0.003625,0.00365]

(%il2) e : find_root(F,ea,eb);

(%012) 0.00364983

(%i13) wf(e);

(%013) done

(%il4) plot2d([[discrete,xL1,yL1],[discrete,xL2,yL2] ,[discrete, xR,yR]],
[xlabel,"x"],[ylabel,"y(x)"], [legend,false])$

which produces a plot of the un-normalized ground state viiavetion with zero nodes.
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Figure 12: Numerical Un-normalized Ground State Wave Ranct

We can check the normalized difference in slopes at the nmatgoint for the solution produced wf(E) :

(%i15) dy_diff();
(%015) -2.49565076E-14

We can check the number of nodes with the functiam_nodes() .

[+ count the number of nodes in yL2 */

num_nodes() =
block([ n, numer], numer:true,
n:o,
for j thru (length(yL2) - 1) do
if yL2[ j ] * yL2[ j+ 1 ] < Othenn:n + 1,

n)$

For the numerical ground state solution generated abové(ly we get:
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(%i16) num_nodes();
(%016) 0

Afunctionnormalize()  uses the current wave function pieces producedffly) and uses our Simpson’s rule function
simp to produce global normalized wave function (liste)andyn. normalize()  uses our functiomerge(alL1,alL2)
to combine the separate lists into one list. After calligmalize() , one can check the normalization:

(%i17) normalize()$
AA = 6652.6824
x_mean = 0.5
delx = 0.18802
(%il8) simp(xn,yn~2);
(%018) 1.0

Here is the code fanormalize()

/= normalize() uses the current global xL1,yL1, xL2,yL2, xR, y R and
the utility functions merge and simp to define global

xn and yn, with the latter being normalized.

*/

normalize() :=
block ( [AA,x_mean,x2_mean,delx,delx2, numer ], numer:tr ue,

xn @ merge( xL1, merge( rest(xL2), rest(xR))),
yn : merge( yL1, merge( rest(yL2), rest(yR))),

/* we need xn to have odd # of elements to use simp */
if evenp ( length (xn) ) then (
Xn : rest (xn),
yn : rest (yn)),
if debug then print ( " fli(xn) = ", fli(xn) ),
if debug then print( " fli(yn) = ", fli(yn) ),
AA : simp(xn,yn”2),
print(( " AA = ",AA),
yn : yn/sqgrt(AA),
if debug then print( " fli(yn) = ", fli(yn) ),

X_mean : simp(xn, xn *yn“2),

print(" x_mean = ", x_mean),

X2_mean : simp(xn, xn"2 *yn“2),

delx2 : x2_mean - Xx_mean2, / * this should be positive! */

delx : sqrt(delx2),

print(" delx = ", delx),
done)$

Once we have usetbrmalize() , we can use the functioyn_plot_current() , Which uses the current list® and
yn.

(%i19) yn_plot_current()$
ymax = 1.3867012
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which produces the plot
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Figure 13: Numerical Normalized Ground State Wave Function

Here is our code foyn_plot_current()

/* yn_plot_current() uses the currently defined normalized s et (xn,yn)
*/

yn_plot_current() :=
block(f[ymn, ymx, numer],numer:true,
ymn : float(floor( Imin(yn) )),
ymx : float( 1 + floor( Imax (yn) ) ),
print("* ymax = ", Imax(yn) ),
plot2d( [discrete, xn, yn], ['y,ymn,ymx],
[ylabel,"y"], [xlabel,"x"],
[style,[lines,3]], [legend, false], [gnuplot_preamble, "set grid"]))$

The more versatile functiopn_plot(E,xmin,xmax) does three tasks in succession, first callivi(E) to create the
un-normalized wave function pieces, then callimgmalize()  to create the normalized wave function ligts andyn,
and finally making a plot of the normalized wave functionngsimin andxmax to control the horizontal display.

Here is an example dealing with the first excited (one nodeg st

(%i20) [ea,eb] : bracket(F,0.01,0.005,0.001);
(%020) [0.014375,0.015]

(%i21) e : find_root(F,ea,eb);

(%021) 0.0145973

(%i22) yn_plot(e,-0.5,1.5)$

E = 0.0145973

number of nodes = 1 , dy diff = -7.59213486E-14
AA = 1278.4068

x_mean = 0.5

delx = 0.276562

normalized ymax = 1.3865517
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which produces the plot
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Figure 14: Numerical Normalized First Excited State Wavadtion

Here is our code foyn_plot

/* yn_plot(E,xmin,xmax) first calls wf(E) to create
un-normalized wave functions corresponding to the
given energy E. Then normalizes those wave functions
to produce the lists xn and yn. Finally makes a plot
of yn over only the region (xmn, xmx) */

yn_plot(E,xmn,xmx) :=
block([ymn, ymx, numer],numer:true,

Wf(E),

print" E = "E ),

print(" number of nodes = ",num_nodes(),", dy_diff = ",dy_d iff() ),
normalize(),

print(" normalized ymax = ", Imax(yn) ),

ymn : floor( Imin(yn) ),
ymx : 1 + floor( Imax (yn) ),
plot2d( [discrete, xn, yn], ['Xx,xmn, xmx],
[y, ymnyymx], [ylabel,"y"], [xlabel,"x"],
[style, [lines, 3] ], [legend, false], [gnuplot_preamble, "set grid"]))$

We now want to construct a functidavels(...) which will produce a list of the energy levels, found using ou
numerical Runge-Kutta methods, starting with the grourdesenergy, and continuing up to some maximum energy.
Some experimentation shows that instead of usi(E) with a succession of small values Bf it is easier to use a
function F1(k) , since thek values corresponding to the energy eigenvalues are latgebers of orde(1). Here is
such a function which we cafl1(k) .

/= energy eigenvalue if global function F1(k) = O .
F1(k) calls wf(E) then returns dy_diff(), but
returns false if k <= 0 or >= gam .
*/

F1(k) :=
block( [ numer],numer:true,
if kK <= 0 or k >= gam then (
print(" in F1(k), k = "k, k should be greater than 0 and less t han ",gam),
return(false) ),
wf(k2/gam2),
dy_diff())$
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Here is an example of use Bi(k) to find the ground state energy:

27

(%i23) F1(2.9);

(%023) 34.29503

(%i24) F1(3.05);

(%024) -49.882755

(%i25) [ka,kb] : bracket(F1,2.9,0.05,0.02);
(%025) [3.0125,3.025]

(%i26) kO : find_root(F1,ka,kb);
(%026) 3.0206914

(%i27) EO : ktoE(kO);

(%027) 0.00364983

(%i28) wf(EO);

(%028) done

(%i29) dy_diff();

(%029) -1.49739046E-13
(%i30) num_nodes();

(%030) 0

which reveals a zero node wave function with a very smallevalidy _diff()

We can make a crude plot BL.(k) versusk

, a signal of a good wave function.

(%i31) kL : makelist(k,k,1,49,0.5)$

(%i32) F1L : map(F1, kL)$

(%i33) time(%);

(%033) [6.23]

(%i34) plot2d([discrete,kL,F1L],[xlabel,"k"],[ylabel

CFLRS

which produces the plot
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Figure 15: Crude Plot of F1(k) versus k

Let's useF1(k) tolook at the regio2.8 <= k <= 3.3

(%i315 kL : makelist(k,k,2.8,3.3,0.05)$
(%i36) F1L : map(F1, kL)$
(%i37) plot2d([discrete,kL,F1L],[xlabel,"k"],[ylabel

SFLK)'D$
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which produces the plot
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Figure 16: F1(k) Zoom

Placing the cursor on thel = 0 intersections shows roots at rouglly= 3.01 andk = 3.06 . The first root is close
to the valid ground state case as shown above. We cabraget with F1(k) to refine the second root.

(%i38) [ka,kb] : bracket(F1,3.03,0.01,0.005);
(%038) [3.0775,3.08]

(%i39) kv : find_root(F1,ka,kb);
(%039) 3.0799546

(%i40) Ev : ktoE(kv);

(%040) 0.00379445

(%i41) wf(Ev);

(%041) done

(%i42) num_nodes();

(%042) 0

(%i43) dy_diff();

(%043) -1.60000886E+16

The large value ofly_diff() shows that this second, slightly larger root, is an un-gtalssolution. Since we already
have a valid zero node solution at the lower energy, thereatdre a second zero node solution at another, higher, energy
This pattern persists, with the physical root being smaled the un-physical root being slightly larger. This patte
provides the rationale for our code fiavels(...) . Once we have found a solution with a given number of nodes,
we reject all solutions with higher energy but the same nurobaodes. The unphysical roots correspond to a sudden
change in which (left or right) integration function has tagger slope magnitude at the matching point.

Here is our code folevels(kmin,kmax,dk, kacc )

[ = levels(kmin,kmax,dk, kacc ) returns a list [Ea, Eb,...] of e nergy levels with
increasingly larger number of nodes in energy range (Emin, E max)
according to Emin = kmin"2/gam™2, and Emax = kmax"2/gam"2.
uses F1(k) (inside bracket) to find roots, and calls wf(E), n um_nodes() and

dy_diff() for each root found,

Uses bracket and find_root.

The arguments (dk, kacc) are used to call bracket, and do not d escribe

the accuracy of the energy levels found.

Once a good energy e.v. is found we look for the region of

energies with one more node and search there.

Includes an interactive continue or stop input.

Searching for the k eigenvalues via F1(k) is easier than sear ching
directly for the E eigenvalues via F(E) for the case gam = 50 wh ich we
consider in our examples.

*/
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levels(kmin,kmax,dk, kacc ) :=

block([ k,knext, kroot,eroot, eL, ka, kb, nn, nlast : -1, r, n umer], numer:true,
k : kmin,
eL : [ 1], [ list eL will hold energy eigenvalues found */
do (
if k > kmax then return(), / * exit do loop */
print("---------------- levels --------mmmemeeeeee ",
print(" nlast = ", nlast),
print(" kstart = ", k," dk = ", dk ),

[ka, kb] : bracket(F1,k, dk, kacc),
print(" ka = "ka," kb = "kb),
if float(ka) = 0.0 then (
print(" can't find bracket interval "),
print(" k = "Xk,
return() ),
kroot : find_root(F1, ka, kb),
print(" kroot = ", kroot),
eroot : kroot™2/gam2,
print(" eroot = ", eroot),
wf(eroot),
nn : num_nodes(),
print(" number of nodes = ", nn),
print(" dy_diff at x = 1 is " dy_diff() ),
eL : cons(eroot, el),
nlast : nn,
r : read (" input c; or s; "),
if string(r) = "s" then return(), / * exit do loop */

/= search for a k value greater than kb which produces
a wave function with nn + 1 nodes */
knext : kb + dk,
do (
wf(knext"2/gam2),
if num_nodes() > nlast then (
k : knext,
return() )
else knext : knext + dk)),

reverse(elL) )$

Here is an example of usingvels . To continue to the next energy eigenvalue, one erderat the prompt (for
“continue”). Actually, any letter except will cause the program to continue.

(%i44) EL : levels(1,8,0.05,0.02);
levels

nlast = -1

kstart = 1 dk = 0.05

ka = 3.0125 kb = 3.025

kroot = 3.0206914

eroot = 0.00364983

number of nodes = 0

dy diff at x = 1 is -2.49565076E-14

input c; or s;

C;

levels
nlast = 0
kstart = 3.125 dk = 0.05
ka = 6.0375 kb = 6.05
kroot = 6.040956
eroot = 0.0145973
number of nodes = 1
dy diff at x = 1 is 2.18273877E-13
input c; or s;
C;
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levels
nlast = 1
kstart = 6.2 dk = 0.05
ka = 9.05 kb = 9.0625
kroot = 9.0603555
eroot = 0.032836
number of nodes = 2
dy diff at x = 1 is 7.10273285E-14
input c; or s;
C;
(%044) [0.00364983,0.0145973,0.032836]

We can then usgn_plot(E,xmin,xmax) to both construct the listen andyn of the normalized wave function and
make a plot. We can also usekelist to construct one listyn, say, which combines the lisk® andyn into one. In
the following, we do not show the plots produced by the callmt plot

(%i45) yn_plot(EL[1],-0.5,1.5)$

E = 0.00364983

number of nodes = 0 , dy diff = -2.49565076E-14
AA = 6652.6824

x_mean = 0.5

delx = 0.18802

normalized ymax = 1.3867012

(%i46) xyn0 : makelist([xn[j],yn[j]].j,1,length(xn))$

(%id7) fli(xyn0);

(%047) [[-0.5,0.0],[1.5,0.0],201]

We continue in this manner with the first excited state and#do®nd excited state.

(%i48) yn_plot(EL[2],-0.5,1.5)$

E = 0.0145973

number of nodes = 1 , dy diff = -2.05936658E-12
AA = 1278.4068

x_mean = 0.5

delx = 0.276562

normalized ymax = 1.3865517

(%i49) xynl : makelist([xn[j],yn[j]].j,1,length(xn))$

(%i50) yn_plot(EL[3],-0.5,1.5)$

E = 0.032836

number of nodes = 2 , dy diff = -2.00652203E-12
AA = 365.3835

x_mean = 0.5

delx = 0.290108

normalized ymax = 1.385693

(%i51) xyn2 : makelist([xn[j],yn[j]].j,1,length(xn))$

We can then combine the plots for the wave functions of thesetlowest lying states.

(%i52) plot2d([[discrete,xyn0],[discrete,xyn1],[disc rete,xyn2]],
[xlabel,"x"],[ylabel,"y"],[style,[lines,2]],
[legend,"EQ","E1","E2"])$
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which produces the plot
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Figure 17: Finite Well: Lowest Three Energy Level Wave Fiorcd

Just for practice, we can write these three wave functiomsfile in the local folder, and then restart Maxima, read in the
file contents, and make a plot based on the file contents. Wediagussed some details of such read and write actions
within Maxima in Chapter 2 of Maxima by Example.

The simplest approach is to usave(filePath,al,a2,a3,...) , Where objectal, a2, etc are object names bound
to quantities known to Maxima. The names and the objectsdtuthe names are stored in Lisp language format in the
file requested (which is created if it does not yet exist, areharitten if it already exists). You can, of course, opeatth
file with a text editor to see the contents, written in Lisp.

One can ustad to load in that file into a new Maxima session, and the name®hjaitts will then be available for use
in your new Maxima session. If you don’t remember the namesuged in your previous session, you can usgaes;
to generate a list of currently known object names.

(%i53) EO : EL[1];

(%053) 0.00364983

(%i54) E1 : EL[2];

(%054) 0.0145973

(%i55) E2 : EL[3];

(%055) 0.032836

(%i56) save("c:/k3/fwl.dat",EO0,xyn0,E1,xyn1,E2,xyn2)
(%056) "c:/k3/fwl.dat"

If we look at the top of the file:/k3/fwl.dat with a text editor (such a& otepad + +) we see:

i - *- Mode: LISP; package:maxima; syntax:common-lisp; - * -
(in-package :maxima)
(DSKSETQ |$e0| 0.0036498306077588829)
(ADD2LNC ’|$e0| $VALUES)
(DSKSETQ $XYNO
'((MLIST SIMP) ((MLIST SIMP) -0.5 0.0)

((MLIST SIMP) -0.48999999999999999 1.2769296242295217E -12)
((MLIST SIMP) -0.47999999999999998 2.8785287263561221E -12)
((MLIST SIMP) -0.46999999999999997 5.2117339500682875E -12)
((MLIST SIMP) -0.46000000000000002 8.8694267352155839E -12)
((MLIST SIMP) -0.45000000000000001 1.4781088055950433E -11)

etc., etc.

We now restart Maxima and load ap3.mac , FW.mac, and the data file created usisgve above.
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(%il) load(cp3);
(%01) "c:/k3/cp3.mac"
(%i2) load(FW);
gam = 50 gam2 = 2500
h = 0.01, xdecay = 0.5, ypleft = 1.0E-8 ypright = 1.0E-8
(%02) "c:/k3/FW.mac"
(%i3) load("c:/k3/fwl.dat");
(%03) "c:/k3/fwl.dat"
(%i4) values;
(%04) [mydate,_binfo%,N,h,gam,gam2,xdecay,ypleft,ypr ight,E0,xyn0,E1,xyn1,E2,xyn2]
(%i5) EO;
(%05) 0.00364983
(%i6) E1;
(%06) 0.0145973
(%i7) E2;
(%07) 0.032836
(%i8) fll(xynO0);
(%08) [[-0.5,0.0],[1.5,0.0],201]
(%i9) head(xynO0);

(%09) [[-0.5,0.0],[-0.49,1.27692962E-12],[-0.48,2.87 852873E-12],
[-0.47,5.21173395E-12],[-0.46,8.86942674E-12],[-0.4 5,1.47810881E-11]]
(%i10) plot2d([[discrete,xyn0],[discrete,xyn1],[disc rete,xyn2]],

[xlabel,"x"],[ylabel,"y"],[style,[lines,2]],
[legend,"EQ","E1","E2"])$

and we get the same plot as above.

2.2.2 Numerical Energies and Wave Functionsusing R

We use our homemadsyrk4 routine for the Runge-Kutta integration. When the Fi&.Ris loaded, a number of global
parameters are defined. The top the thedieR has the lines:

## FW.R uses Runge-Kutta for finite well.

## dimensionless units

#t V =1 for x <0 and x > 1

#t V=0for0<x<1

# y'(x) + gam2  *(E - V(X)) *y(x) =0
## gam2 = gam™2 = 2500

## gam = 50 = sqgrt(2 *mL"2 *VO/ hbar"2)

#it initial global parameters:

0
.0

P
I
O

1
a 50
gam2 = gam™2
xdecay = 0.5 ## start yL1 integration at x = -xdecay

## start yR integration at x = 1 + xdecay

ypleft = 1le-8
ypright = 1e-8
debug = FALSE
wfdebug = FALSE
cat (* gam = ",gam, " gam2 = ", gam2,"\n")
cat (" h =" h, " xdecay = ", xdecay, "ypleft = ", ypleft," ypr ight = "ypright,"\n")

Q =
3
I

We integrate from a point = -xdecay chosen so that we can assugf{exdecay) = 0  to the pointx = 0, thus
defining a grid vectokL1 of integration points, a vectgiL1 of values ofy(z) at these grid points, and a vecigiL1 of
values ofy’(x) at these grid points whefé = 1.

We assume an arbitrary small valysleft ~ for the first derivativey’ at this starting point. The resulting wave function,
the solution of a homogeneous equation, can be later naredalivhich will, in effect, amount to choosing the correct
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initial first derivative at the left starting point.

The final value ofy andy’ thus generated become the initial valueg @ndy’ for integration through the region where
V =0,0 <z < 1, thus generating a grid vectat2 of integration points, a vectoi.2 of values ofy(x) at these grid
points, and a vectopL2 of values ofy/(z) at these grid points whefié = 0.

The integration in the regiom > 1 is done by starting at a location= 1 + xdecay where we can assume= 0
and we again assign an arbitrary (but negative) first dévivatypright . We then integrate toward smaller valuesrof
until we reachr = 1. Since we are hence integrating in the direction in whichpitnsical solution is growing, we avoid
integration instability problems produced by small rouffidmd integration algorithm errors.

We then multiply the vectongL1, ypL1,yL2, andypL2 by a factor which assures us that the final valug(af) produced
by the independent rightward and leftward integrationgeeagt the matching point= 1. The value ofy(z) can be made
to agree at the matching point for any eneifgy However, the resulting wave function values will still bisa@ntinuous
because the first derivatives will not agree at the matchaoigtp

The crucial step, then, is to design a functibF), say, that is zero (to within numerical errors) when thedgres
agree at the matching point. We can then look for the locatairsign changes if'(E) to locate the energy eigenvalues.

The first step needed, in order to be able to design such ddarkE) , is to design a functiowf(E) which uses Runge
Kutta methods to find a un-normalized wave function corradpa to a given total energy. Here is our code for such
a wave function integrator, as listedRfv.R.

#it wf(E) creates ** un-normalized *»  numerical wave functions
#it using Runge-Kutta routine myrk4.

#it The wave functions are stored in global vectors

#H xL1, yL1,ypL1, xL2, yL2, ypL2, xR, YR, ypR .

#it Program also defines *+ global ** nleft, nright, ncenter.

#it the global xL1 grid extends from -xdecay to 0  and

#it the global xL2 grid extends from 0 to 1 and

#it the global xR grid extends from 1 to 1 + xdecay

wf = function (E) {

if (E<0]|((E>1){
cat (" need 0 < E <1 \n
return(false) }

ncenter = N

if ( round(ncenter) != ncenter) {
cat (" ncenter = ",ncenter,” is not an integer \n")
return(false) }

nleft = round(xdecay/h)

nright = nleft

if (wfdebug) cat (" nleft = ",nleft,” ncenter = ",ncenter,” n right = ",nright, "\n")
gr = gam2 *(E - 1) ##  g(x) for x < 0 and x > 1

gc = gam2+E #Ht gx) for 0 < x < 1

if (wfdebug) cat (* glr = "glr,” gc =", gc, "\n")

#it construct xI1, yl1, and ypll for -xdecay < x < 0O

derivs.decay = function (x,y) { ¢ (y[2], - gIr *y[1]) }

xI1 = seq (- xdecay, 0, h)

outL = myrk4( c(0,ypleft), xI1, derivs.decay)

yl1 = outL[[1]]

ypll = outL[[2]]

#it construct xI2, yI2, and ypl2 for 0 < x < 1
derivs01 = function (x,y) { ¢ (y[2], - gc *y[1]) }
xl2 = seq(0, 1, h)

outL = myrk4( c(last(yll), last(ypll)), xI2, derivsO1l)

yl2 = outL[[1]]

ypl2 = outL[[2]]
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#it construct xr, yr, and ypr for 1 < x < 1 + xdecay
xr = seq( 1 + xdecay, 1, -h)

outL = myrk4( c(0, -ypright), xr, derivs.decay)

yr = outL[[1]]

ypr = outL[[2]]

Xr = rev(xr)

yr = rev(yr)

ypr = rev(ypr)

if (wfdebug) cat (" yr(1) = ", yr[1], "\n" )

fac = yr[1] / last(yl2)

if (wfdebug) cat (" fac =
yl1 = fac =yll

ypll = fac ~*ypll

yl2 = fac =*yl2

ypl2 = fac *ypl2

##  make global xL1,xL2,xR,yL1,yL2,yR,ypL1,ypL2,ypR
xL1 <<- xl1

XL2 <<- xI2

XR <<- xr

yL1 <<- yll

yL2 <<- yl2

YR <<-yr

ypLl <<- ypll

ypL2 <<- ypl2

YPR <<- ypr }

" fac, "\n")

The second step needed to desigE) is to create a functiody_diff()

which returns a normalized difference of the

first derivativesy (z) — v () evaluated at the matching point= 1. We return this difference divided by the value of

ylx =1).

#it dy_diff() uses global ypL2, ypR, and yR,

#t returns a normalized difference of derivatives
# (yL'(1) - yR'(1)/ yR(2)

dy_diff = function () {
dy_left = last(ypL2)
dy _right = ypR[1]

(dy_left - dy_right)/abs( yR[1] )}

For example,

> wf(0.5)

> dy_diff()

[1] 35.0717

> last(ypL2)

[1] -0.00190471
> ypR[1]

[1] -0.237432
> yR[1]

[1] 0.00671558

Here is our code foF(E) :

##  energy eigenvalue if global function F(E) = 0 .
#it F(E) calls wf(E) then returns dy_diff(), but
#it returns FALSE if E < 0 or > 1 .

F = function (E) {

if (E<O]E>1) {
cat (" in F(E), E = "E"
return(FALSE) }

wi(E)

dy_diff() }

should be between 0 and 1

\n

")
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Here is an example of usirg(E) to produce a rough graphical survey of the possibilities:

35

> EL = seq(0.1,0.9,0.01)
FL = sapply(EL, F)

\%

> fll(FL)

82.3613 17.2303 81
> plot(EL, FL, type = "I, lwd = 2, col = "blue", xlab = "E",ylab = "FE)" )
> mygrid()

which produces the plot
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Figure 18: Crude Plot of F(E)

We can usé-(E) to search for energy eigenvalue candidates. We do this withaion bracket(func,x,dx,xacc)
which attempts to return two valuesfat whichfunc has the opposite sign.

## bracket is a modified version of bracket_basic, designed to work with
#it the functions F(E) or F1(k) which can return FALSE.
#it bracket looks for a sign change in func,
#it starting with xx, and increasing xx by dxx each step.
#it If sign change is found, then we back up to the previous xx
#it and search with new dxx value one half of the previous value
#it normally returns [ea,eb], but if can't find change in sign ,
#it then returns [0,0], and if func returns FALSE, then
#it bracket returns FALSE.
bracket = function (func,xx,dxx,xacc) {

X = XX

dx = dxx

it=20

itmax = 1000

anerror = FALSE

anerror2 = FALSE

repeat {

it =it + 1
if (it > itmax) {
cat (" can't find change in sign \n")
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anerror = TRUE

break}
X1l = X
X2 = x + dx
if ( debug ) cat (" it = "it," x1 = "x1," x2 = "x2," dx = ", dx, "\ n")

fl = func(xl1)

if (fl == FALSE) {
cat (" in bracket, f1 = FALSE , x1
anerror2 = TRUE
break }

f2 = func(x2)

if (f2 == FALSE) {
cat (" in bracket, f2 = FALSE , x2
anerror2 = TRUE

break }

if (fl * 2 <0) {
if ( abs(dx) < xacc ) break
X = X - dx
dx = dx/2 } else x = x2 }

if (anerror) ¢(0,0) else if (anerror2) FALSE else c(x1,x2) }

"X1, " dx =", dx, " \n ")

Il
>
N~

dx =", dx, " \n "

Here is an example of usingacket with the functionF(E) . This example produces the zero node ground state case,

and we plot the un-normalized wave function pieces prodbgedfi(E) .

> out = bracket(F,0.0005,0.0001,0.00005)

> out

[1] 0.003625 0.003650

> e = uniroot(F,out, tol = le-16)$root

> e

[1] 0.00364983

> wi(e)

> plot(0, type = "n", xlim = c(min(xL1l), max(xR)), ylim = c(0, max(yL2)),
+ xlab = "x", ylab = "y" )
> lines (xL1, yL1, lwd = 3, col = "blue")
> lines (xL2, yL2, lwd = 3, col = "red")

> lines (xR, yR, lwd = 3, col = "green")

> mygrid()

which produces a plot of the un-normalized ground state viiavetion with zero nodes.
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Figure 19: Numerical Un-normalized Ground State Wave Ranct

We can check the normalized difference in slopes at the rimatqioint for the solution produced wf(E) :

> dy_diff()
[1] -3.42736e-12
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We can check the number of nodes with the functiam_nodes() .

37

num_nodes = function () {
n=20
for (j in1: (ength(yl2) - 1)) {if (yL2[ ] ] *y2lj+1]<0 n=n+1}
n }

For the numerical ground state solution generated abové(By we get:

> num_nodes()
[1] O

Afunctionnormalize()  uses the current wave function pieces producedffly) and uses our Simpson’s rule function

simp to produce global normalized wave function (vectots)andyn. We use the functiomest defined incp3.R in

normalize()

Before we usaormalize() , let's show interactively the route we follow in the begingiof normalize()

> xn = ¢ (xL1, ¢ ( rest(xL2), rest(xR) ) )
> fll(xn)
-05 15 201
> yn = ¢ (yL1, c ( rest(yL2), rest(yR) ) )
> fli(yn)
0 0 201
> head(xn)
[1] -0.50 -0.49 -0.48 -0.47 -0.46 -0.45
> head(yn)
[1] 0.00000e+00 1.04151e-10 2.34784e-10 4.25090e-10 7.23 426e-10 1.20560e-09
> simp(xn,yn“2)
[1] 6652.68

Here we calhormalize() , and then check the normalization interactively using Siomgs rulesimp .

> normalize()

AA = 6652.68
X_mean = 0.5
delx = 0.18802
> simp(xn,yn“2)
[1] 1

Here is the code fanormalize()

##  normalize() uses the current global xL1,yL1, xL2,yL2, xR , YR and
#it the utility functions rest and simp to define global
#it xn and yn, with the latter being normalized.
normalize = function () {
xn = ¢ (xL1, ¢ ( rest(xL2), rest(xR) ) )

yn = ¢ (yL1, c ( rest(yL2), rest(yR) ) )
##  we need xn to have odd number of elements to use simp
if (is.even ( length (xn) ) ) {
Xn = rest (xn)
yn = rest (yn) }
AA = simp(xn,yn~2)
cat (" AA = "AA "\n")
yn = yn/sqrt(AA)
X_mean = simp(xn, xn * yn“2)

cat (" x_mean = ", x_mean, "\n" )

Xx2_mean = simp(xn, xn“2 * yn“2)

delx2 = x2_mean - x_mean"2 ## this should be positive!
delx = sqrt(delx2)

cat (" delx =", delx, "\n" )

Xn <<- Xn

yn <<= yn '}
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After usingnormalize() , one can plot the normlized wave function (the current wscto andyn) using the function

yn_plot_current()

> yn_plot_current()
ymax = 1.3867

which produces the plot
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Figure 20: Numerical Normalized Ground State Wave Function

The functionyn_plot_current() uses the current global vectons andyn created byhormalize()

#it yn_plot_current() uses the currently defined normalize d set (xn,yn)
yn_plot_current = function () {

ymn = floor( min(yn) )

ymx = 1 + floor( max (yn) )

cat (" ymax = ", max(yn), "\n" )

plot(xn, yn, type = "I', lwd = 3, col = "blue", ylim = c(ymn, ymx ),

xlab = "x", ylab = "y", tck = 1) }

The more versatile functiopn_plot(E,xmin,xmax)

does three tasks in succession, first callivi(E) to create the
un-normalized wave function pieces, then callmgmalize()  to create the normalized wave function vectors in the

form of xn andyn, and finally making a plot of the normalized wave functioringsmin andxmax to control the display.

Here is an example dealing with the first excited (one nodeg st

> out = bracket(F,0.01,0.005,0.001)

> out

[1] 0.014375 0.015000

> e = uniroot(F,out, tol = le-16)$root
> e

[1] 0.0145973

> yn_plot(e,-0.5,1.6)

E = 0.0145973

number of nodes = 1 , dy diff = 1.61333e-13
AA = 1278.41

Xx_mean = 0.5

delx = 0.276562

normalized ymax = 1.38655
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which produces the plot

Figure 21: Numerical Normalized First Excited State Wavadtion

Here is our code foyn_plot

#it yn_plot(E,xmin,xmax) first calls wf(E) to create
#it un-normalized wave functions corresponding to the
#it given energy E. Then normalizes those wave functions
#it to produce the vectors xn and yn. Finally makes a plot
#it of yn over only the region (xmn, xmx)
yn_plot = function (E,xmn,xmx) {
wi(E)
cat " E ="E, "\n")
cat (" number of nodes = ",num_nodes(),", dy_diff = ",dy_dif fO), "\n" )
normalize()
cat (" normalized ymax = ", max(yn), "\n" )
ymn = floor( min(yn) )
ymx = 1 + floor( max (yn) )
plot(xn, yn, type = "I", lwd = 3, col = "blue", xlim = c(xmn,xmx ), ylim = c(ymn, ymx),
xlab = "x", ylab = "y", tck = 1) }

We now want to construct a functidavels(...) which will produce a vector of the energy levels, found usiug
numerical Runge-Kutta methods, starting with the groumdesénergy, and continuing up to some maximum energy.
Some experimentation shows that instead of ugi(€) with a succession of small values Bf it is easier to use a
function F1(k) , since thek values corresponding to the energy eigenvalues are latgebers of orde(1). Here is
such a function, which we cail1(k) .

#it F1(k): energy eigenvalue if global function F1(k) = O .
#it F1(k) calls wf(E) then returns dy_diff(), but
#it returns false if k <= 0 or k >= gam.
F1 = function (k) {
if (k<=0]k>= gam) {
cat (" in F1(k), k = "k, k should be greater than 0 and less tha n ",gam, "\n")
return(FALSE)  }
wf(k"2/gam?2)
dy_diff()  }
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Here is an example of use Bi(k) to find the ground state energy:

> F1(2.9)

[1] 34.295

> F1(3.05)

[1] -49.8828

> out = bracket(F1,2.9,0.05,0.02)
> out

[1] 3.0125 3.0250

> kO = uniroot(F1, out, tol = le-16)$root
> kO

[1] 3.02069

> EO = ktoE(kO)

> EO

[1] 0.00364983

> wf(EO)

> dy_diff()

[1] 3.41072e-13

> num_nodes()

[1] 0

which reveals a zero node wave function with a very smallevalidy diff() , a signal of a good wave function.

We can make a crude plot 6.(k) versusk

> kL = seq(1,49,by=0.5)

> head(kL)

[1] 1.0 1.5 2.0 25 3.0 35

> F1L = sapply (kL, F1)

> head (F1L)

[1] 50.6042 50.0387 48.9460 46.2163 13.2072 57.5400

> plot(kL, F1L, type = "I", lwd = 2,col = "blue"xlab = "k"yla b = "F1(k)")
> mygrid()

which produces the plot
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Figure 22: Crude Plot of F1(k) versus k
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Let's useF1(k) tolook atthe regiorz.8 <= k <= 3.3

> kL = seq (2.8, 3.3, by = 0.05)

> head(kL)

[1] 2.80 2.85 2.90 2.95 3.00 3.05

> F1L = sapply( kL, F1)

> head(F1L)

[1] 40.3843 37.9920 34.2950 27.7891 13.2072 -49.8828

> plot(kL, F1L, type = "I", lwd = 2,col = "blue"xlab = "k"yla b = "F1(k)")
> mygrid()

which produces the plot
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Figure 23: F1(k) Zoom

This zoom plot shows roots at roughty= 3.01 andk = 3.06 . The first root is close to the valid ground state case as
shown above. We can useacket with F1(k) to refine the second root.

> out = bracket(F1,3.03,0.01,0.005)
> out

[1] 3.0775 3.0800

> kv = uniroot(F1, out, tol = le-16)$root
> kv

[1] 3.07995

> Ev = ktoE(kv)

> Ev

[1] 0.00379445

> wi(Ev)

> num_nodes()

[1] 0

> dy_diff()

[1] -2.64829e+15

The large value ofly_diff() shows that this second, slightly larger root, is an un-gtalssolution. Since we already
have a valid zero node solution at the lower energy, thereatdre a second zero node solution at another, higher, energy
This pattern persists, with the physical root being smaled the un-physical root being slightly larger. This patte
provides the rationale for our code fiavels(...) . Once we have found a solution with a given number of nodes,
we reject all solutions with higher energy but the same nurob@odes. The unphysical roots correspond to a sudden
change in which (left or right) integration function has tagger slope magnitude at the matching point.
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Here is an example of usirigvels

> EL = levels(1,8,0.05,0.02)

levels

nlast = -1

kstart = 1 dk = 0.05

ka = 3.0125 kb = 3.025

kroot 3.02069

eroot = 0.00364983

number of nodes = 0

dy diff at x = 1 is 3.41072e-13

input ¢c or s

c

levels
nlast = 0
kstart = 3.125 dk = 0.05
ka = 6.0375 kb = 6.05
kroot = 6.04096
eroot = 0.0145973
number of nodes = 1
dy diff at x = 1 is 1.61333e-13
input ¢c or s
c

levels
nlast = 1
kstart = 6.2 dk = 0.05
ka = 9.05 kb = 9.0625
kroot = 9.06036
eroot = 0.032836
number of nodes = 2
dy diff at x = 1 is -1.36136e-13
input ¢ or s
c
> EL
[1] 0.00364983 0.01459726 0.03283602

We can then usgn_plot(E,xmin,xmax) to both construct the vectossy andyn of the normalized wave function
and make a plot. We save the normalized wave functions bgrasgnt statements suchya® = xn, andyn0 = yn,
before another call tgn_plot defines the wave functions corresponding to a differentggndn the following, we do
not show the plots produced by the calls/to plot

> yn_plot(EL[1],-0.5,1.5)
E = 0.00364983
number of nodes = 0 , dy diff = 3.41072e-13
AA = 6652.68
X_mean = 0.5
delx = 0.18802
normalized ymax = 1.3867
> xn0 = xn
> fll(xn0)
-0.5 1.5 201
> yn0 = yn
> fli(yn)
0 0 201

We continue in this manner with the first excited state ands#dm®nd excited state.

> yn_plot(EL[2],-0.5,1.5)
E = 0.0145973
number of nodes = 1 , dy diff = 1.61333e-13
AA = 1278.41
X_mean = 0.5
delx = 0.276562
normalized ymax = 1.38655
> xnl = xn
> fli(xnl)
-0.5 1.5 201
> ynl = yn
> fli(ynl)
0 0 201
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> yn_plot(EL[3],-0.5,1.5)

E = 0.032836

number of nodes = 2 , dy_diff = -1.36136e-13
AA = 365.384

X_mean = 0.5

delx = 0.290108

normalized ymax = 1.38569
> XN2 = Xn
> yn2 = yn

We can then combine the plots for the wave functions of thesetlowest lying states.

plot(0,type = "n"xlim = ¢(-0.5,1.5),ylim = c(-1.5,1.5), xlab="x",ylab="y")
lines(xn0,yn0,lwd=2,col="blue")
lines(xnl,ynl,lwd=2,col="red")
lines(xn2,yn2,lwd=2,col="green")
mygrid()
legend("bottomright”,col = c("blue","red","green"),
legend = c("EOQ", "E1", "E2"), lwd=2,cex=1.5)

+ V VVVYVYV

which produces the plot
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Figure 24: Finite Well: Lowest Three Energy Level Wave Fiortd

Just for practice, we can write these three wave functiorssfile in the local folder, and then rest&tread in the file
contents, and make a plot based on the file contents.

The simplest approach is to usave(filePath,al,a2,a3,...) , Where objectal, a2, etc are object names bound
to quantities known to R. The names and the objects boundetmdimes are stored in a binary file format in the file
requested (which is created if it does not yet exist, andvenitten if it already exists).

One can usédoad to load in that file into a new session, and the names and shjé@titthen be available for use in
your new Maxima session. In the following, we first save th@evainction files taxy.rda . We then usem to remove
knowledge of those objects from the current session. Weubkeload to recover knowledge of those objects, which can
then be used as before, for example to make plots and makdataios.

> save(xn0,yn0,xnl,yn1,xn2,yn2, file = "xy.rda")
> rm(xn0,yn0,xn1,yn1,xn2,yn2)
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> fll(xn0)
Error in fll(xn0) : object 'xn0’ not found
> load("xy.rda")
> fll(xn0)
-0.5 15 201

For example, we can remake the plot of all three wave funstion

plot(0,type = "n"xlim = ¢(-0.5,1.5),ylim = c(-1.5,1.5), xlab="x",ylab="y")
lines(xn0,yn0,lwd=2,col="blue")
lines(xnl,ynl,lwd=2,col="red")
lines(xn2,yn2,lwd=2,col="green")
mygrid()
legend("bottomright”,col = c("blue","red","green"),
legend = c("EOQ", "E1", "E2"), lwd=2,cex=1.5)

+ V VVVYVYV

and we get the same plot as above.

Here is the code faevels

#it levels(kmin,kmax,dk, kacc ) returns a vector c( Ea, Eb,.. .) of energy levels with
#it increasingly larger number of nodes in energy range (Emin , Emax)
#it according to Emin = kmin"2/gam™2, and Emax = kmax"2/gam™2 .
#it uses F1(k) (inside bracket) to find roots, and calls wf(E) , hum_nodes() and
#it dy_diff() for each root found,
## Uses bracket and uniroot.
#it The arguments (dk, kacc) are used to call bracket, and do no t describe
#it the accuracy of the energy levels found.
#it Once a good energy e.v. is found we look for the region of
#it energies with one more node and search there.
#it Code has interactive continue or stop.
#it Searching for the k eigenvalues via F1(k) is easier than se arching
#it directly for the E eigenvalues via F(E) for the case gam = 50 we
#it consider in this example.
levels = function (kmin,kmax,dk, kacc ) {
rmax = 20
eL = rep(NA, rmax) ## vector eL will hold energy eigenvalues f ound
k = kmin
nlast = -1
=1
repeat {
if (k> kmax | j > rmax) break ## exit do loop
cat ("---------m-m-m-- levels ------m-mmmemeeeee \n")
cat (" nlast = ", nlast,"\n")
cat (" kstart = ", k," dk =", dk, "\n" )

out = bracket(F1,k, dk, kacc)
cat (" ka = ",out[1]," kb = ",out[2],"\n")
if (out[l] == 0) {
cat (" can't find bracket interval \n")
cat (" k ="k, "\n")
break }
kroot = uniroot(F1, out, tol = 1e-16)$root
cat (" kroot = ", kroot, "\n")
eroot = kroot™2/gam?2
cat (" eroot = ", eroot, "\n")
wf(eroot)
nn = num_nodes()
cat (" number of nodes = ", nn, "\n")
cat (" dy_diff at x = 1 is " dy_diff(), "\n" )
eL[ j] = eroot
nlast = nn
j=ji+1
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r = readline (" input c or s \n ")

if (r =="s") break ## exit do loop

H#Ht search for a k value greater than kb which produces
i a wave function with nn + 1 nodes

knext = out[2] + dk

repeat {

wf(knext"2/gam2)
if (num_nodes() > nlast) {
k = knext
break } else knext = knext + dk } }  ## end of outer repeat loop
##  remove NA’'s at end of eL
elL[lis.na(eL)] }

3 TheNumerov Integration Method

Numerov’'s method was developed by the Russian astrononmés Basil’evich Numerov in the years 1924-1927. Nu-
merov’s algorithm is a simple and efficient method for in&dmg linear second order ode’s which do not contain a first
order derivative term and is especially useful for homogeseode’s, such as Schroedinger’s equation.

Corresponding to a grid of equally spaced valugsf the independent variable, will be valuesy,, of the dependent
variable. A numerical solution of the ode
y"(x) + g(z) y(z) = S(x) 3.1

can then be constructed using the following Numerov threa tecursion relation

1+h—2 -2 1—% 1 n —h—25 10S,, + S O(r%) (3.2
12 In+1 | Yn+1 12 9n | Un + + 12 In—1 ) Yn—1 = 12 ( n+1 + n T n—l) + ( ) .
Solving this linear equation for eithet,.; or y,,—1 then provides a recursion relation for integrating eittwewird or
backward inz, with a local errorO(h6). The Numerov scheme is more efficient than the Runge-Kutthade as each
step of the Numerov method requires the computationarid.S at only the grid points (and not at intermediate points).
However, the Runge-Kutta method provides bgth) andy’(x) at the grid points, whereas the Numerov method only
providesy(x) at the grid points.

For a derivation of the Numerov method, see

https://en.wikipedia.org/wiki/Numerov's_method

3.1 Classical Smple Harmonic Oscillator Test Case
Let's try out the Numerov method for a classical simple harimoscillator with unit period, defined by

d2y

5 = —4r?y(z), y(0)=1, y(0)=0 (3.3)

over the domair) < x < 1. This corresponds to (3.1) with(z) = 0 andg(z) = 472, in which case the Numerov
algorithm (3.2) takes the form (integrating in the direntimf increasinge):

Ynt1 = AYn — Yn—1 (3.4)

with

2 (1 2r2x?
Aw (3.5)
3
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The analytic solution for the initial conditions assumed(313) isy(x) = cos(2wz). Givenyy, = y(x = 0) and
yo = y'(x = 0) we can calculate;; = y(h) using a Taylor series expansion abaut= 0. In order to calculate
yo = y(2h) with an accuracy)(h®) we needy; with this same accuracy. It is sufficient, however, to caltel; with
an accuracyO(h°) because the global error of Numerov’s methodig:®) and we calculatey; just once. Using the
expansion

h? h3 R4
y1 =y(h) =yo +hy, + 7y"(0) + gy"'(O) + Ey”"(O) + O(h°) (3.6)
we get
2 2
Y1 =yo+ hyh—27° h2y0—§7r2h3y6+§7r4h4y0 (3.7)

3.1.1 Classical SHO Numerov Method Using Maxima

We have written two Maxima “do loop” versions of Numerov's timad to integrate our classical simple harmonic oscil-
lator example. These two versions are called(h,y0,yp0) andsho2(h,y0,yp0) and they are in the filep3.mac .
Here is the first version, which builds up a list of lists using the Maxima functioaons .

I+ sho(h,y0,yp0)

integrates simple harmonic oscillator with unit period
d2y/dx"2 = - 4 pi"2 y(x) over [x,0,1]
using the numerov method.
Input: h = step size, yO = y(0), yp0 = y'(0)
Output: list [[0,y0],[h,y1],[2 h, y2],...]

*/

sho(h,y0,yp0) :=
block([A,y1,N,ym,yz,yp,rL,X,
xmin:0,xmax:1,numer],numer:true,
A 2% -5 *%pi"2 xh"2/3)/(1 + %pi2 *h"2/3),
yl : yO + h »yp0 - 2 *%pi"2 *h™2 *y0 - 2 *%pi"2 *h"3 *yp0/3 +
2% %pi*4 *h™4 xy0/3,
N : round( (xmax - xmin)/h ),
rL : [[xmin+h,y1], [xmin,y0]],
X : Xmin + 2 =*h,
ym : yo,
yz 1 yl,
for j thru N - 1 do (
yp @ Axyz - ym,
rL : cons ( [xyp], rL),
ym :yz,
yz 1 yp,
X : X + h),
reverse(rL))$

This code usesgp (“y plus”) to representy,,.1, yz (“ y zero”) to represeni,,, andym (“y minus”) to represent,,_1,
hence the lingp : A *yz - ym, inthe loop, with values being “rolled” at the end of the lodfpwe useh = 0.01, we
get good agreement with the exact solution:

(%il) load(cp3);

(%o01) "c:/k3/cp3.mac"

(%i2) soln : sho(0.01, 1, 0)$
(%i3) xL : take(soln,1)$

(%id) fll(xL);

(%04) [0,1.0,101]

(%i5) head(xL);

(%05) [0,0.01,0.02,0.03,0.04,0.05]
(%i6) tail(xL);

(%06) [0.95,0.96,0.97,0.98,0.99,1.0]
(%i7) XxL[1];

(%07) 0

(%i8) yL : take(soln,2)$
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(%i9) fli(yL);
(%09) [1,1.0,101]
(%il0) head(yL);

(%010) [1,0.998027,0.992115,0.982287,0.968583,0.9510 57]
(%ill) yL[1];

(%011) 1

(%il2) plot2d([['discrete,xL,yL],cos(2 * %pi* x)],['x,0,1],['xlabel,"x"],

['ylabel,"],['legend,"numerov","analytic"],
[gnuplot_preamble,"set key bottom"))$
(%il3) plot2d([['discrete,soln],cos(2 * %pi* x)],['x,0,1],['xlabel,"x"],

[gnuplot_preamble,"set key bottom"))$

Either of the above plot2d statements produce the plot
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Figure 25: Classical SHO Numerov Solution with= 0.01

The second Maxima versisho2 uses 'hashed arrays’ calletd andyL in the code. By using a line in the code of the
form local(xL,yL) these hashed arrays are not known at the global level, andnveease the same names globally as
shown in the example below. Note that the form of the outpsho® is different than that o$ho.

sho2(h,y0,yp0) :=
block([A,y1,xmin,xmax,N,x,ym,yz,yp, numer], numer:tru e,
local(xL,yL),
A2+ -5 *%pi"2 *h"2/3)/(1 + %pi"2 *h"2/3),
yl : yO + h *yp0 - 2 *%pi"2 *h"2 *y0 - 2 *%pi"2 *h"3 »yp0/3 +
2% %pi*4 *h™4 xy0/3,

print" A = "A" yl =" yl),
xmin : 0,

xmax : 1,

N : round ( (xmax - xmin)/h),
print" N =", N),

XL[1] : xmin,

XL[2] : xmin + h,

yL[1] : yO,

yL[2] : y1,

X : Xmin + 2 xh,

ym : Y0,

yz @ yl,

for j: 3 thru N + 1 do (
yp 1 Axyz - ym,
xL[]] @ X,
yLil = yp,
ym : y21
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yz 1 yp,
X : X + h),
[ listarray(xL), listarray(yL) ] )$

We use the same input parameters as before in this examplempbasize the fact that the code lineal(xL,yL)

hides the values assigned to the hashed arrays, we firsemsalue
produced in the example above.

to remove the definition of the listd. andyL

(%il4) remvalue(xL, yL);

(%014) [xL,yL]

(%il5) xL[1];

(%015) xL[1]

(%i16) yL[1];

(%016) yL[1]

(%i17) soln : sho2(0.01, 1, 0)$
A = 1.9960535 yl = 0.998027
N = 100

(%il8) xL[1];

(%018) xL[1]

(%i19) xL : soln[1]$

(%i20) flI(xL);

(%020) [0,1.0,101]

(%i21) head(xL);

(%021) [0,0.01,0.02,0.03,0.04,0.05]
(%i22) yL[1];

(%022) yL[1]

(%i23) yL : soln[2]$

(%i24) fli(yL);

(%024) [1,1.0,101]

(%i25) plot2d([['discrete,xL,yL],cos(2

* %pi* x)],['x,0,1],['xlabel,"x"],

[gnuplot_preamble,"set key bottom"))$

which produces exactly the same plot as produced wsing

3.1.2 Classical SHO Numerov Method Using R

The file cp3.R contains a functiorsho(h,y0,yp0)
function returns a R listlist(xL, yL)
the corresponding values produced by the Numerov code.

with the same input syntax as the Maxima version. But the R
in whichxL is a vector containing the positions, angL is a vector containing

#it sho(h,y0,yp0)

## integrates simple harmonic oscillator with unit period
#it d2y/dx"2 = - 4 pi"2 y(x) over [x,0,1]

#it using the numerov method.

#it Input: h = step size, yO = y(0), yp0 = y’'(0)

#it Output: list( xL, yL)

sho = function(h,y0,yp0) {

A =21 -5 *pi"2 *h™2/3)/(1 + pi"2 *h"2/3)
yl = y0O + h*xyp0 - 2 *pi"2 *h™2*y0 - 2 *pi"2 *h"3 »yp0/3 +
2xpi"4 *h™4 *y0/3

xmin = 0

xmax = 1

N = (xmax - xmin)/h
yL = vector(length = N + 1)
xL = vector(length = N + 1)
XL[1] = xmin

XL[2] = xmin + h

yL[1] = yO

yL[2] = y1
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X = Xxmin + 2 *h

ym = y0

yz =yl

for (j in 3:(N + 1)) {
yp = A*yz - ym

xL[j] = x

yLIT = yp

ym =yz

yz =yp

Xx =x + h}
list( xL, yL) }

We can then compare the Numerov method with the analytidiealwith the same value df as used in our Maxima
work above. The R functiofil  (also incp3.R ) prints out the first, last, and length of a R vector.

> source("cp3.R")
> soln = sho(0.01,1,0)
A = 199605 yl = 0.998027
N = 100
> xL[1]
Error: object 'xL’ not found
> xL = solIn[[1]]

> fll(xL)
0o 1 101
> yL = soIn[[2]]
> fli(yL)
1 1 101
> plot(xL,yL,type="I",Iwd=2,xlab="x",ylab = ")
> curve(cos(2  *pi *x),0,1,add=TRUE,col="red",lwd=2)
> mygrid()
> legend("bottomright”,col=c("black","red"),cex=1.5,
+ legend=c("Numerov","Analytic"),lwd=2)

which produces a plot which shows agreement:
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Figure 26: Numerov Solution for Classical SHO with= 0.01 using R
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4 TheLennard Jones 6-12 Potential Well: Energy L evels and Wave Functions

The Lennard Jones 6-12 potential (energy) can be defined by

V(r) =4V, {(g)m - (9)6} , (4.1)

r

in which a is an adjustable lengthi}; is an adjustable energy amd> 0. We used the quasi-classical WKB method in
Example 1 of this series to estimate the lowest molecularggrievels associated with this potential.

We define a dimensionless coordinate- r/a, a dimensionless potential energy= V/Vy and energyly = E/Vyand
a dimensionless wave functioh(z) = \/a ¥ (z), in terms of which we have a dimensionless potential (er)ergy

~ 1 1
and Schroedinger’s equation takes the form
ChE) | o (m o) Toa
=+t (B- V(@) (@) =0, (4.3)

in which the dimensionless parameter

2ma?Vp 1/2
The wave function normalization condition becomes
/ O(2)dE = 1. (4.5)
0

In Example 1 we used the case= 50, which we will also use here.

In the following, we omit the tildes and ugéz) to represent)().

4.1 TheNumerov Method Using Maxima

The fileLJ6-12.mac contains a group of Maxima functions designed to explorectiergy levels and wave functions
associated with a quantum patrticle in the Lennard-Jones f@dfential introduced in the previous section. The dimen-
sionless parameter takes on the same value as used for our quasi-classicaldppibach in Example 1 of this series,
andgamz2in our code representg’.

The dimensionless potential (enerdyjx) does not depend on the value-o&nd we can make a simple plot and explore
its shape. After defining a function which is based on the fof (z), we define the value af, calledxm, whereV/ (x)
takes on its minimum value, and show tiéatzm) = —1, V(1) = 0, andV (z) approaches large positive values as
x approache®, and small negative values farvery large. Recall that now represents a non-negative dimensionless
number.

(%il) V(z) = (4 *(Z(-12) - Z2°(-6)) )$
(%i2) xm : float(2"(1/6));
(%02) 1.122462048309373
(%i3) V(xm);

(%03) -1.0

(%i4) V(1);

(%04) 0

(%i5) V(0.5);

(%05) 16128.0

(%i6) V(3);

(%06) -2912/531441

(%i7) float(%);
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(%07) -0.0054794417442388

(%i8) V(0.1);

(%08) 3.9999959999999946E+12

(%i9) V(10.0);

(%09) -3.9999959999999997E-6

%i10) limit(V(x),x,inf);

(%010) 0

(%ill) limit( V(x),x,0,plus );

(%011) inf

(%il2) plot2d([ [discrete,[ [0.8,0],[2,0]]], V(X)],
[x,0.8,2],[y,-1.5,2], [xlabel,"x"],[ylabel,"V(x)"],

[style, [lines,3]],[legend,false],[gnuplot_preamble, "set grid"])$
plot2d: some values were clipped.

which produces the dimensionless potential (energy) plot:

V()

Figure 27: Dimensionless Lennard Jones Potential (Energy)

The bound state energy eigenvalues lie in the rangle< £ < 0 and the classical turning points are defined by the
equationE = V(z). Settingy = z%, one obtains a quadratic equationyimvhich is easily solved fog;,. One can then
obtain the classical turning points as a functionfbfrom z;, = ytlf. Bearing in mind that? < 0, we can write the
turning points in Maxima code as

(%i13) xin(E) := xm * (sqrt(E+1)/E-1/E)"(1/6)$
(%i14) xout(E) := xm * (sqrt(E+1)+1)"(1/6)/(-E)"(1/6)$

and then one can add a hypothetical energy level line to aengial energy plot:

(%il5) plot2d([ [discrete,[ [0.8,0],[2,0]]], V(X),
[discrete, [ [xin(-0.5),-0.5],[xout(-0.5),-0.5] 1] 1,
[x,0.8,2],[y,-1.5,2], [xlabel,"x"],[ylabel,"V(x)"],
[style, [lines,3]],[legend,false],[gnuplot_preamble, "set grid"])$
plot2d: some values were clipped.

which produces the plot

V()

Figure 28: Adding a Hypothetical Energy Level
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Loading in the fileLJ6-12.mac defines a set of global parameters and functions defined &iphe the file:

/| * initial global parameters: */
( h:0.01,
h2 : h™2/12, / * Numerov constants * [
h52 : 5 xh2,
gam2 : 2500, / * square of gam = 50 */
xldecay : 0.3, / * start yL integration at (x1 - xldecay) */
x2decay : 1, /= start yR integration at (x2 + x2decay) */
y2left : le-19, / * y(x_left + h) value chosen from E = -0.9 case */
y2right : 1e-16, / * y(x_right - h) value chosen from E = -0.9 case */
print(* gam2 = ", gam2),
print(" h =", h, " xldecay = ", xldecay, ", x2decay = ", x2deca y),
print(" y2left = "y2left, *  y2right = ", y2right ),
xm : float(2°(1/6)), / * this is where V(x) = -1 = minimum value */
/= for given energy -1 < E < 0 , these are the turning points */
xin(E) := xm = (sqrt(E+1)/E-1/E)*(1/6),
Xout(E) := xm = (sqrt(E+1)+1)"(1/6)/(-E)*(1/6),
/ = dimensionless potential V(x) for Lennard-Jones 6/12 poten tial  */
V(@) = (4 *(Z(-12) - 7(-6) ) )$

The grid sizeh and two Numerov method constarit® andh52 which depend or are then globally available. We
call the left classical turning pointl and we start the rightward Numerov integration at posititn- xldecay with

y = 0. Likewise we call the right classical turning poix2 and start the leftward Numerov integration at position
X2 + x2decay with y = 0.

(%il) load(cp3);

(%01) "c:/k3/cp3.mac"

(%i2) load("LJ6-12.mac");

gam2 = 2500

h = 0.01, xldecay = 0.3, x2decay = 1
y2left = 1.0E-19 y2right = 1.0E-16

(%02) "c:/k3/LI6-12.mac"

Let us ignore, at first, some slight refinements we have indide cand give a simplified version.
We first define a grid point2c which is close to the right classical turning poxzt.

We next generate a list callgd which contains the values gfz) from the grid pointx_left : x1 - xldecay , With
Y(z1epe) = 0, andy(zepe + h) = y2left , and further points generated using the Numerov methodijntong to the
grid pointx2c + h.

Next we generate a list callegr which contains the values af(x) from x2 + x2decay , with y(z,ign:) = 0, and
y(zrigne—h) =y2right , and further points generated using the Numerov methodinzong to the grid poink2c - h .

We then multiply all values ofL by a common factor which ensures tlgatandyR agree on the value gix = x2c)

Thex grid valuesxL andxR, and the correspondingx) grid values contained in the lisi& andyR are available as
global quantities.

Here is code fowf(E) from LJ6-12.mac that generates the un-normalized wave functions in the fafrthe global
listsxL, yL, xR, yR. In the functionwf(E) we use the hashed arraxls, yl , xr , andyr . Their names are included in a
local statement of the fornocal(g,xl,yl,xr,yr) , SO that the hashed arrays are not available at the glolw=ll lev
At the end ofwf(E) we have statements suchxas : listarray(xI) andyL : listarray(yl) , which make the
contents of the hashed arrays available as ordinary listsady.
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[+ wf(E) creates * un-normalized *  wave functions
for the Lennard-Jones 6/12 potential case.
limits of numerical integration, x_left and x_right are
determined by energy E and xdecay values.
The wave functions are stored in global xL, yL, xR, yR.
Program also defines * global **  x2c, nleft, nright, x_left, x_right.
See example run at end.
nleft = the number of steps from x_left to x2c = grid point near est to
x1 = xin(E) = classical turning point < xm = 1.122462
x2 = xout(E) = classical turning point > xm.
the global xL grid extends from x_left to x2¢c + h and
the global xR grid extends from x2c - h to  x_right,
so we can compute y'(x2c) using a 3 pt. symmetric formula.
*/
wf(E) := block( [x1,x2,x, fac,numer],numer:true,
if (E > 0) or (E < -1) then (
print(* need -1 < E < 0 "),
return(false)),
local(g,xl,yl,xr,yr),
g(z) = gam2 *( E - V(2) ), / = coeff. func. in ode: y”"(x) + g(X) y(x) = 0O */
x1 : xin(E), / * classical turning point for x < xm */
X2 : xout(E), / * classical turning point for x> xm */
if wfdebug then print(" x1 =", x1, " X2 =", X2),
x_left : x1 - xldecay,
nleft : round ( (x2 - x_leftyh ), / * number of steps from x_left to x2c = match point */
x2c : x_left + h * nleft,
if wfdebug then print(" x_left = "x_left,” nleft = " nleft, " Xx2c =", x2¢),
if wfdebug then print(" y2left = ", y2left, " y2right = ", y2ri ght),
nright : round ( (x2 + x2decay - x2c)h ), / * number of steps from x2c to x_right * [
x_right : x2¢ + h * nright,
if wfdebug then print(" nright = ",nright,” x_right = "x_ri ght),
[+ find yL for x_left <= x <= x2c + h using Numerov algorithm */
xI[1] : x_left,
xl[2] : x_left + h,
yll1] = 0,
yl[2] : y2left,
for j:2 thru nleft + 1 do (
X X _left + j *h,
xIj+1] : x,
yili+1] = (2 *(1 - h52 *g(x-h))  * yI[] - (1 + h2  xg(x-2 *h)) * yIj-1] )/ (1 + h2 *g(x) ),
[+ find yR for x2c - h <= x <= x_right using Numerov method */

xr[nright + 2 ] : x_right,

xr[nright + 1] : x_right - h,

yr[nright + 2] : 0,

yr[nright + 1] : y2right,

for jinright+1 step -1 thru 2 do (
X : X2c + h *( -3),

xrfj-1] : X,

yrli-1] = (2 *(1-h52 *g(x+h)) *yr[] - (1 + h2  *g(x+2 xh)) *yr[j+1] )/(1 + h2 *g(x) ),
fac : yr[2]iyl[nleft + 1], / * yR(x2c) / yL(x2c) */
for j thru nleft+2 do  yl[ j ] : fac * ylljl

xL : listarray(xl),
yL : listarray(yl),
xR : listarray(xr),
yR : listarray(yr),
done)$
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An example of the use aff(E) for a randomly chosen energy is

(%i3) wf(-0.5);

(%03) done

(%i4) fll(xL);

(%04) [0.726743,1.3867425,67]

(%i5) fll(xR);

(%05) [1.3667425,2.3767425,102]

(%i6) head(yL);

(%06) [0,1.75654725E-29,-3.97814273E-28,1.06730999E- 26,-3.66490209E-25,
1.85515641E-23]

(%i7) tail(yL);

(%07) [1.46282504E-4,4.50817194E-4,7.49059762E-4,0.0 0104033,0.00132673,0.00161295]

(%i8) dy_diff();

(%08) 33.121756

(%i9) num_nodes();

(%09) 3

The functiondy_diff() used above is designed to return the difference of the appat& numerical first derivatives at
the matching poink2c implied byyL andyR, divided by the value of(x2c) . Here is our code fody_diff()

[+ dy_diff() uses global yL, yR,nleft, h
computes numerical y'(x2c) using
symmetric three point method for
both yL and yR, and returns the difference
divided by y(x2c)

*/

dy_diff() :=

block([ypL, ypR, numer],numer:true,
ypL : ( last(yL) - yL[nleft] ) / (2 * h),
yPR © (YR[3] - first(yR)) / (2 *h),

(ypL - ypR)/ abs (yR[2]) )$

The functionnum_nodes() has the definition:

[+ count the number of nodes in yL
ignore region where elements of yL are
tiny in magnitude.
uses position(...) */

num_nodes() =
block([x11, jO, yLm2, n, numer], numer:true,
x11 : x_left + xldecay,
jO : position(x11, xL),
yLm2 : rest(yL,-2), / * ignore y(x2c) and y(x2c+h) values in count */
n: 0,
for j : jO thru (length(yLm2) - 1) do
if yLm2[j] * yLm2[j + 1] < 0O then n : n + 1,
n)$

and useposition(...)

[ = position(xv, alL) is designed to be used with xL to locate
position of first element which is equal to or greater than x1
since in this package xL has just increasing positive number s in it

*/

position(xv, aL) := ( first (sublist_indices(aL,lambda([ X], x >= xv))))$
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We search for energy eigenvalues by seeking enegimsch that the value returned ky_diff() is zero to within
numerical errors. A functiof(E) allows us to scan energy ranges for energy eigenvalues.

/ = energy eigenvalue if global function F(E) = 0 .
F(E) calls wf(E) then returns dy_diff(), but
returns false if E > 0.

*/

F(E) =
block( [ numer],numer:true,
if E > 0 then (
print(" in F(E), E = "JE," should be negative "),
return(false)),
WH(E),
dy_diff())$

Here is an example of usirg(E) .

(%il0) EL : makelist(e,e,-0.91,-0.85,0.01);

(%010) [-0.91,-0.9,-0.89,-0.88,-0.87,-0.86,-0.85]

(%ill) FL : map(F,EL);

(%011) [7.199669,2.035782,-5.228712,-24.50145,-58.60 732,232.5781,61.42046]
(%i12) F(-0.91);

(%012) 7.1996689

(%i13) F(-0.88);

(%013) -24.501452

(%il4) e : find_root(F, -0.91,-0.88);

(%014) -0.896404

A function wf_plot(E)  generates a non-normalized numerical solution usiffg§) , makes a plot and prints out the
energy and maximum y value, the number of nodes, and the vhliye diff() corresponding to the chosen enegyy

(%il5) wf_plot(e);
E = -0.896404 , ymax = 27.422334
number of nodes = 0 , dy diff = 7.94875172E-14

which produces the plot

4]
4
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X

Figure 29: Zero Nodes Un-normalized Eigenfunction
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The code fowf _plot(E) is

| *
wf_plot (E) calls wf(E) and plot2d
creates ** un-normalized = wave functions
stored in global xL, yL, xR, yR.
prints out number of nodes in yL
prints out dy_diff .
*/
wf_plot(E) :=
block([xxL, yyL, ymn,ymx, numer], numer:true,

WF(E),

xxL : rest(xL, -1),

yyL : rest(yL, -1),

ymn : float( floor ( Imin(yyL))),
ymx : float(1 + floor ( Imax(yyL))),

printf(t " E =", E, ", ymax = ", Imax(yyL) ),

print(" number of nodes = ",num_nodes(), ", dy_diff = ",dy_d iff() ),

plot2d([ [discrete, xxL, yyL], [discrete, rest(xR,1), res t(yR,1)] 1,
[y,ymn,ymx], [ylabel,"y"], [xlabel,"x"], [style, [lines .31,

[legend, false], [gnuplot_preamble,"set grid"]))$

We then create (fromL andyR) a global normalized wave function ligh corresponding to a global grid ligh created
from xL and xR using the functiomormalize() . This function also computes and prints the value of the tuman
mechanical particle position uncertaindy: implied by the wave function.

(%il6) normalize();

AA = 85.006868

X_mean = 1.1406875

delx = 0.0455039

(%016) done

(%i17) fli(xn);

(%017) [0.781455,2.2014549,143]
(%i18) fli(yn);

(%018) [-3.14183197E-20,0,143]
(%i19) Imax(yL);

(%019) 27.422334

(%i20) Imax(yn);

(%020) 2.9742495

The functionnormalize  uses our utility functionsimp (Simpson’s one third integration rule) angkrge .

/= normalize() uses the current global xL,yL, xR, yR and
the utility functions merge and simp to define global
xn and yn, with the latter being normalized.

* [
normalize() :=
block ( [AAx_mean,x2_mean,delx,delx2, numer ], numer:tr ue,

xn : merge( rest(xL,-1), rest(xR, 2) ),
yn : merge( rest(yL,-1), rest(yR, 2) ),
/* we need xn to have odd # of elements to use simp */
if evenp ( length (xn) ) then (
Xn : rest (xn),
yn : rest (yn)),
AA : simp(xn,yn”2),
print( " AA = "AA),
yn @ yn/sqgrt(AA),
X_mean : simp(xn, xn *yn“2),
print(" x_mean = ", x_mean),
X2_mean : simp(xn, xn"2 *yn“2),
delx2 : x2_mean - x_mean™2, / * this should be positive! */
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delx : sqrt(delx2),
print(" delx = ", delx),
done)$

Oncenormalize() has been used to create andyn from the current un-normalized wave function, we can use
yn_plot_current() to see the current normalized wave function.

(%i21) yn_plot_current()$
ymax = 2.9742495

which produces the plot

Figure 30: Zero Node Normalized Eigenfunction

A function yn_plot(E, xmin, xmax) goes from a given energy to a call towf(E) andnormalize() and then
makes a plot of the resulting normalized wave function in ste@, with control over the region of tleaxis for the plot.
Thus

(%i22) yn_plot(e,0.8, 1.6)$

E = -0.896404

number of nodes = O , dy diff = 7.94875172E-14
AA = 85.006868

X_mean = 1.1406875

delx = 0.0455039

normalized ymax = 2.9742495

produces the plot
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Figure 31: Using yrplot(E,xmin,xmax) forkl = —0.896404

Here is an example of using_plot for an energy which is not an energy eigenvalue. The valudy afiff() reported
is based on the non-normalized wave function producedf(s) .

(%i23) yn_plot(-0.95,0.8, 1.6)$

E = -0.95

number of nodes = 0 , dy diff = 16.398098
AA = 139.33333

X_mean = 1.1545679

delx = 0.0420213

normalized ymax = 3.2673444




4 THE LENNARD JONES 6-12 POTENTIAL WELL: ENERGY LEVELS AND WAE FUNCTIONS

which produces the plot
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Figure 32: Using yrplot(E,xmin,xmax) fork = —0.95

We see a large discontinuity in the slope of the normalizedevianction, reflected also in the large valuedgf diff()
reported in the non-normalized wave function.

Here is the code foyn_plot

58

yn_plot(E,xmn,xmx) :=
block(f[ymn, ymx, numer],numer:true,

WF(E),

print" E = "E ),

print(" number of nodes = ",num_nodes(),", dy_diff = ",dy_d iff() ),
normalize(),

print(" normalized ymax = ", Imax(yn) ),

ymn : floor( Imin(yn) ),
ymx : 1 + floor( Imax (yn) ),
plot2d( [discrete, xn, yn], ['x,xmn, xmx],
['y,ymnymx], [ylabel,"y"], [xlabel,"x"],
[style, [lines, 3] ], [legend, false], [gnuplot_preamble, "set grid"))$

A plot of the values ofF(E) over a wider energy range will show other candidate energiegxcited states having
energies greater than the ground state (zero node statematgyF, = —0.896404 found above). However, use of the
function bracket(Estart,dE,Eacc) is an easier way to find candidate energy eigenvalbescket looks for the

first sign change iF(E) , and (in a normal exit) returns a pair of energies for wit¢l) has the opposite sign. Applying

this approach to the ground state energy found above,

(%i23) [ea,eb]:bracket(F,-0.96,0.02,0.01);
(%023) [-0.9,-0.895]

(%i24) e: find_root(F,ea,eb);

(%024) -0.896404

(%i25) yn_plot(e,0.8,1.6)$

E = -0.896404

number of nodes = O , dy diff = -1.33606678E-13
AA = 85.006868

X_mean = 1.1406875

delx = 0.0455039

normalized ymax = 2.9742495

which results in the same plot as we displayed above for thmalized ground state.
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Here is our code fobracket

/ *= this function implementation of bracket, designed to work w ith
the package LJ6-12.mac, looks for a sign change in func,
starting with xx, and increasing xx by dxx each step.
If sign change is found, then we back up to the previous xx
and search with new dxx value one half of the previous value.
normally returns [ea,eb], but if can't find change in sign,
then returns [0,0], and if func returns false, then
bracket returns false.
*/

bracket(func,xx,dxx,xacc) =
block([f1,f2, x:xx, dx:dxx,xx1,xx2,it:0,itmax:1000],
do (
it @it + 1,
if debug then print(it),
if it > itmax then (
print(" can't find change in sign "),
return([0, O 1)),
xx1 : X,
XX2 : x + dx,
fl @ func(xxl),
if not f1 then (
print(" in bracket, f1 = false , xx1 = "xx1, " dx =", dx),
return(fl)),
f2 : func(xx2),
if not f2 then (
print(" in bracket, f2
return(f2)),
if f1 *f2 < 0 then (
if abs(dx) < xacc then return([xx1,xx2]),
X X - dx,
dx : dx/2)
else x : xx2))$

false , xx2 = "xx2, " dx =", dx),

Let's usebracket to find a candidate energy for the first excited state, whicdukhhave one node and be a continuous function.

(%i26) [ea,eb]:bracket(F,e + 0.01,0.02,0.01);
(%026) [-0.866404,-0.861404]

(%i27) e: find_root(F,ea,eb);

(%027) -0.865689

(%i28) yn_plot(e,0.8,1.6)$

E = -0.865689

number of nodes = O , dy diff = -1.17696426E+16
AA = 5.59079278E+30

X_mean = 1.1192306

delx = 0.0350225

normalized ymax = 3.2891799

which produces the plot

Figure 33: False Energy Eigenvalue #6r= —0.865689
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The plot shows a discontinuous zero node wave function amdegmorted value ody_diff() is not a tiny number, as
dy_diff() should be for a valid energy eigenvalue case. We also notembidnad already found a valid zero node
energy eigenvalue.

Continuing with a search for energy eigenvalues usiagket

(%i29) [ea,eb]:bracket(F,e + 0.01,0.02,0.01);
(%029) [-0.710689,-0.705689]

(%i30) e : find_root(F,ea,eb);

(%030) -0.71066

(%i31) yn_plot(e,0.8,1.6)$

E = -0.71066

number of nodes = 1 , dy diff = 8.68128554E-15
AA = 0.0295798

X_mean = 1.1806289

delx = 0.0807403

normalized ymax = 2.6000666

which produces a valid one node wave function

3
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Figure 34: One Node Wave Function faBr= —0.71066

This one node wave function is continuous and the reporteee\at dy_diff() is a tiny number.

We will again find a spurious one node solution at a slightyhler energy. However, we must reduce the size of the
dE argument tdoracket

(%i32) [ea,eb]:bracket(F,e + 0.01,0.02,0.01);
(%032) [-0.71066,-0.70566]

(%i33) [ea,eb]:bracket(F,e + 0.02,0.02,0.01);
(%033) [-0.71066,-0.70566]

(%i34) [ea,eb]:bracket(F,e + 0.02,0.01,0.005);
(%034) [-0.68566,-0.68316]

(%i35) e : find_root(F,ea,eb);

(%035) -0.684654

(%i36) yn_plot(e,0.8,1.6)$

E = -0.684654

number of nodes = 1 , dy diff = 4.23941273E+16
AA = 3.63949121E+28

X_mean = 1.1531148

delx = 0.0706492

normalized ymax = 2.5594982
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which shows a spurious one node wave function (note the eegg lvalue ofly_diff ):

A

A

0.8 0.9 1 11 12 13 14

15 16

Figure 35: False Energy Eigenvalue #6r= —0.684654

Now that we see the pattern of valid energy eigenvalues, wevciée a functionlevels(Emin,Emax,dE, Eacc)

bracket

61

, Which uses

with the added filter that no sign changeR(E) is taken seriously unless the associated wave function hasnmre
node than the last energy eigenvalue found.

*/

[ = levels(Emin,Emax,dE, Eacc ) returns a list [Ea, Eb,...] of e

increasingly larger number of nodes in energy range (Emin, E

uses F(E) to find roots, and calls wf, num_nodes() and dy_dif
Uses bracket and find_root.
The arguments (dE, Eacc) are used to call bracket, and do not d

the accuracy of the energy levels found.

Once a good energy e.v. is found we look for the region of

energies with one more node and search there.

Code inclues an interactive continue or stop prompt.

levels(Emin,Emax,dE, Eacc ) :=

block([ e,enext, eroot, eL, ea, eb, nn, nlast : -1, r, numer],
e .
eL :
do (

Emin,

[T [ list eL will hold energy eigenvalues found
if e > Emax then return(), / * exit do loop */

print("---------------- levels ------m-mmmmmmeeeem ",

print(" nlast = ", nlast),

print(" Estart = ", e," dE = ", dE ),

[ea, eb] : bracket(F,e, dE, Eacc),

print(" ea = ",ea,” eb = ",eb),

if float(ea) = 0.0 then (
print(" can't find bracket interval "),
print" e = "),
return() ),

eroot : find_root(F, ea, eb),

print(" eroot = ", eroot),

wf(eroot),

nn : num_nodes(),

print(" number of nodes = ", nn),
print(" dy_diff at x2c = ", dy_diff() ),
eL : cons(eroot, el),

nlast : nn,

r : read (" input c; or s; "),
if string(r) = "s" then return(), / * exit do loop

nergy levels with
max).
f() for each root found,

escribe

numer:true,

*/

*/
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/= search for an energy greater than eb which produces
a wave function with nn + 1 nodes */
enext : eb + dE,
do (
wf(enext),
if num_nodes() > nlast then (
e : enext,
return() )
else enext : enext + dE)),
reverse(el) )$

Here is an example of use:

(%i37) levels(-0.95, -0.6, 0.02,0.01);
levels

nlast = -1

Estart = -0.95 dE = 0.02

ea = -09 eb = -0.895

eroot = -0.896404

number of nodes = 0

dy diff at x2c = -5.41191607E-14

input c; or s;

C;

levels
nlast = 0
Estart = -0.835 dE = 0.02
ea = -0.715 eb = -0.71
eroot = -0.71066
number of nodes = 1
dy diff at x2c = 1.73625711E-14
input c; or s;
C;

levels
nlast = 1
Estart = -0.67 dE = 0.02
ea = -0555 eb = -055
eroot = -0.551436
number of nodes = 2
dy diff at x2c = -7.17260262E-15
input c; or s;
C;
(%037) [-0.896404,-0.71066,-0.551436]
(%i38) [EO,E1,E2] : %;
(%038) [-0.896404,-0.71066,-0.551436]

We then can usgn_plot for the ground state energy to create the normalized wawaifumand make a plot, and using
xyn0 = makelist(...) to save these wave function definitions under a unique name.

(%i39) yn_plot(E0,0.8,1.6)$

E = -0.896404

number of nodes = 0 , dy diff = -5.41191607E-14
AA = 85.006868

X_mean = 1.1406875

delx = 0.0455039

normalized ymax = 2.9742495

(%i40) xyn0 : makelist([xn[j],yn[j]].j,1,length(xn))$

(%i41) fli(xyn0);

(%041) [[0.781455,-3.14183197E-20],[2.2014549,0],143 ]

We can then continue with the first and second excited states.

(%i42) yn_plot(E1,0.8,1.6)$

E = -0.71066

number of nodes = 1 , dy diff = 1.98222687E-13
AA = 0.0295798

X_mean = 1.1806289

delx = 0.0807403

normalized ymax = 2.6000666

(%i43) xynl : makelist([xn[j],yn[j]].j,1,length(xn))$
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(%id4) fli(xynl);

(%044) [[0.754761,2.83787145E-25],[2.2747607,0],153]
(%i45) yn_plot(E2,0.8,1.6)$

E = -0.551436

number of nodes = 2 , dy diff = 2.03223741E-13
AA = 1.24980723E-5

X_mean = 1.2265982

delx = 0.108671

normalized ymax = 2.4452266

(%i46) xyn2 : makelist([xn[j],yn[j]].j,1,length(xn))$
(%id7) fli(xyn2);

(%047) [[0.730536,0],[2.3505359,0],163]

We can finally make a plot of the three normalized wave fumsticorresponding to the lowest three energy levels in thadeh
Jones potential.

(%i48) plot2d([[discrete,xyn0],[discrete,xyn1],[disc rete,xyn2]],
[x,0.8,1.6],[xlabel,"x"],[ylabel,"y"],[style,[lines 211,
[legend,"EQ","E1","E2"])$

which produces the plot

0.8 0.9 1 11 12 13 14 15 16

Figure 36: Lennard-Jones: Wave Functions for Lowest Thresrdy Levels

As we did with the finite potential well case, we can save trergies and wave functions usisgve(filename,al,a2,...)
for use in a later, different Maxima session.

(%i49) save(“c:/k3/LJ1l.dat",EQ,xyn0,E1,xynl,E2,xyn2)
(%049) "c:/k3/LJ1.dat"

The top of this data file, viewed with a text editor, is writierLisp, and looks like:

;i - *- Mode: LISP; package:maxima; syntax:common-lisp; - *-
(in-package :maxima)
(DSKSETQ |$e0| -0.89640379037496043)
(ADD2LNC ’|$e0| $VALUES)
(DSKSETQ $XYNO
'((MLIST SIMP)

((MLIST SIMP) 0.78145488500192117 -3.1418319670117798E -20)
((MLIST SIMP) 0.79145488500192118 7.7629000010676559E- 18)
((MLIST SIMP) 0.80145488500192119 8.9446105712810272E- 16)
((MLIST SIMP) 0.8114548850019212 3.8907747472815292E-1 4)

etc., etc., ...
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If we start a new session of Maxima, we can lessd to load in these saved definitions, and continue to use thamua.

(%il) load(cp3);

(%01) "c:/k3/cp3.mac"

(%i2) load("LJ6-12.mac");

gam2 = 2500

h = 0.01, xldecay = 0.3, x2decay = 1

y2left = 1.0E-19 y2right = 1.0E-16

(%02) "c:/k3/LI6-12.mac"

(%i3) load("LJ1.dat");

(%03) "c:/k3/LJ1.dat"

(%i4) values;

(%04) [mydate, binfo%,h,h2,h52,gam2,x1decay,x2decay, y2left,y2right,xm,EQ,xyn0,

E1,xynl,E2,xyn2]

(%i5) EO;

(%05) -0.896404

(%i6) fll(xynO0);

(%06) [[0.781455,-3.14183197E-20],[2.2014549,0],143]

(%i7) plot2d([[discrete,xyn0],[discrete,xyn1],[discr ete,xyn2]],
[x,0.8,1.6],[xlabel,"x"],[ylabel,"y"],[style,[lines 211,
[legend,"EQ","E1","E2"])$

and we get the same plot as we did in the previous session.

A proper exploration of the likely accuracy of the energyelevfound in this approach would involve experimenting wvifita values
of x1ldecay , x2decay , and the grid sizé. One can modify the code so that the use of a five point symatettinula for the first
derivative is used, instead of the present three point symicfermula.

Increased integration accuracy can also be sought by gréiNumerov integration routine which uses big float arithoniet the
Maxima language to use 20 digit arithmetic, for exampldeathan the default 16 digit arithmetic.

4.2 TheNumerov Method Using R

The file LJ6-12.R contains a group of R functions designed to explore the gnlexgls and wave functions associated with a
guantum patrticle in the Lennard-Jones 6/12 potential guRinThe dimensionless parameter 50 takes on the same value as used
for our quasi-classical limit approach in Example 1 of tliges, andjam2in our code representg.

The dimensionless potential (enerd¥)z) does not depend on the valuep&nd we can make a simple plot and explore its shape.
After defining a function which is based on the formiofz), we define the value af, calledxm, whereV (z) takes on its minimum
value, and show thadt' (zm) = —1, V(1) = 0, andV (z) approaches large positive valuesiaapproache$, and small negative
values forx very large. Recall that now represents a non-negative dimensionless number.

>V = function (x) 4 *(X'(-12) - X°(-6))
> xm = 2°(1/6); xm

[1] 1.12246

> V(xm)

[1] -1

> V(1)

[1] O

> V(0.5)

[1] 16128

> V(3)

[1] -0.00547944

> V(0.1)

[1] 4e+12

> curve(V,0.8,2,lwd=3,col="red",ylim = c(-1.5,2),xlab= "x",ylab="y(x)")
> lines(c(0.8,2),c(0,0),lwd=3,col="blue")

> mygrid()
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which produces the dimensionless potential (energy) plot:

15 2.0

1.0

y(x)

0.5
1
I
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0.0
1

-0.5
\

-15

Figure 37: Dimensionless Lennard Jones Potential (Energy)

The bound state energy eigenvalues lie in the rarge< E < 0 and the classical turning points are defined by the equation
E = V(z). Settingy = 2%, one obtains a quadratic equationinvhich is easily solved fog;,. One can then obtain the classical

turning points as a function df from x, = y,}p/"‘ Bearing in mind thaty < 0, we can write the turning points in R code as

> xin = function (E) xm * (sqrt(E+1)/E-1/E)"(1/6)
> xout = function (E) Xm * (sqrt(E+1)+1)"(1/6)/(-E)"(1/6)

and then one can add a hypothetical energy level line to cwngial energy plot:

> lines(c(xin(-0.5),xout(-0.5)), ¢(-0.5,-0.5), lwd = 3, ¢ ol = "green")

which produces the plot

15 2.0
|

1.0

0.5

y(x)

0.0

-1.0
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0.8 1.0 1.2 14 1.6 18 2.0

Figure 38: Adding a Hypothetical Energy Level
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Loading in the fileLJ6-12.mac defines a set of global parameters and functions defined &ghee the file:

#it initial global parameters :
h = 0.01
h2 = h™2/12 it Numerov constants
h52 = 5xh2

gam2 = 2500 ## square of gam = 50
xldecay = 0.3  ##  start yL integration at (x1 - xldecay)
x2decay = 1 ##  start yR integration at (x2 + x2decay)

y2left = 1le-19 ##t  y(x_left + h) value chosen from E = -0.9 case

y2right = le-16 # y(x_right - h) value chosen from E = -0.9 cas e
cat (" gam2 = ", gam2, "\n")

cat (" h =" h," xldecay = ", xldecay, ", x2decay = ", x2decay, "\n")
cat (" y2left = "y2left, *  y2right = ", y2right, "\n" )

xm = 2°(1/6) #Ht this is where V(x) = -1 = minimum value

i for given energy -1 < E < 0 , these are the turning points

xin = function (E) xm * (sqrt(E+1)/E-1/E)"(1/6)

xout = function (E) Xm * (sqrt(E+1)+1)"(1/6)/(-E)"(1/6)

i dimensionless potential V(x) for Lennard-Jones 6/12 pot ential

V = function (x) 4 *(X'(-12) - X°(-6))

wfdebug = FALSE

The grid sizeh and two Numerov method constami® andh52 which depend o are then globally available. We call the left
classical turning pointl and we start the rightward Numerov integration at positdn- xldecay with y = 0. Likewise we
call the right classical turning poin2 and start the leftward Numerov integration at positk@n + x2decay with y = 0.

> source("cp3.R")

> source("LJ6-12.R")

gam2 = 2500

h = 0.01, xldecay = 0.3 , x2decay = 1
y2left = 1e-19 y2right = 1e-16

Let us ignore, at first, some slight refinements we have in tlde cand give a simplified version.

We first define a grid point2c which is close to the right classical turning poxa.

We next generate a vector callgll which contains the values @f(x) from the grid pointx_left : x1 - xldecay , with
y(xiepe) = 0, andy(ziepe + h) = y2left , and further points generated using the Numerov methodijrzong to the grid point

x2c + h.

Next we generate a vector callgd which contains the values ofz) fromx2 + x2decay , with y(x,ign:) = 0, andy(z,ign: —
h) =y2right , and further points generated using the Numerov methodirtong to the grid poink2c - h .

We then multiply all values ofl by a common factor which ensures tlyat andyr agree on the value gf{x = x2c)

Thex grid valuexl andxr , and the correspondingx) grid values contained in the vectagids andyr are finally made available
as the global quantitied_, xR, yL, andyR respectively.

Here is code fowf(E) fromLJ6-12.R that generates the un-normalized wave functions in the &drtine global vectorsL , yL,
xR, yR.

##  wf(E) creates ** un-normalized *  wave functions

#it for the Lennard-Jones 6/12 potential case.

#it limits of numerical integration, x_left and x_right are

#it determined by energy E and xdecay values.

H#Ht The wave functions are stored in global xL, yL, xR, yR.

H#Ht Program also defines *+ global **  x2c, nleft, nright, x_left, x_right.

#it See example run at end.

#it nleft = the number of steps from x_left to x2c = grid point ne arest to
#it x1 = xin(E) = classical turning point < xm = 1.122462

#it X2 = xout(E) = classical turning point > xm.
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#it
#it
##

wf

the global xL grid extends from x_left to x2c + h and
the global xR grid extends from x2c - h to  x_right,
so we can compute y'(x2c) using a 3 pt. symmetric formula.

= function (E) {

it (E>0)](E<-1) {
cat (" need -1 < E <0 \n"
return(false)  }

g = function(x) gam2 *(E - V(X)) ## coeff. func. in ode: y"(x) + g(x) y(x) =
x1 = xin(E) ## classical turning point for x < xm
X2 = Xout(E) ## classical turning point for x> xm
x_left = x1 - x1ldecay
nleft = round ( (x2 - x_left)/h ) ##  number of steps from x_left
x2c = x_left + h  *nleft
nright = round ( (x2 + x2decay - x2c)/h )  ## number of steps from
x_right = x2c + h  *nright
#t find yL for x_left <= x <= x2c + h using Numerov algorithm
xI = vector( mode = "numeric", length = nleft + 2)
yl = vector( mode = "numeric", length = nleft + 2)
XI[1] = x_left
xl[2] = x_left + h
yl[1] = 0
yl[2] = y2left
for(j in 2: (nleft + 1) ) {
x = x_left + j  *h
xI[j+1] = x
yii+1] = (2 *(1-h52 *g(x-h)) =yl[i] - (1+h2  *g(x-2 *h)) *yl[j-1] )/ (1+h2
#t find yR for x2c - h <= x <= x_right using Numerov method
xr = vector( mode = "numeric", length = nright + 2)
yr = vector( mode = "numeric", length = nright + 2)
xr[nright + 2 ] = x_right
xr[nright + 1] = x_right - h
yr[nright + 2] = 0
yr[nright + 1] = y2right
for (j in (nright+1):2 ) {
X = x2¢ + h *(j -3)
xr[j-1] =X
yri - 1] = (2 *(1-h52 *g(x+h)) =yrfi] - (1+h2  *g(x+2 xh)) *yr[j+1] )/(1+h2
fac = yr[2])/yl[nleft + 1] #it yR(x2c) / yL(x2c)
yl = fac =yl

## create globally known stuff
X2C <<- x2¢

nleft <<- nleft

nright <<- nright

x_left <<-  x_left

X_right <<-  x_right

xL <<- Xl
yL <<- vyl
XR <<- Xxr
YR <<- yr}

0

to x2c = match point

Xx2¢ to x_right

*g(x) }

*g(x) }

An example of usingvf(E) for some arbitrarily chosen negative energy:

> SO
> SO

h =

> he

(1]

> setwd("c:/k3")

urce("cp3.R")
urce("LJ6-12.R")

gam2 = 2500

0.01 , xldecay = 0.3, x2decay = 1

y2left = 1e-19 y2right = 1le-16
> wf(-0.5)
> fll(xL)

0.726743  1.38674 67

ad(yL)
0.00000e+00 1.75655e-29 -3.97814e-28 1.06731e-26 -3. 66490e-25 1.85516e-23
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> fli(yL)
0 0.00161295 67
> flI(xR)
1.36674 2.37674 102
> head(yR)
[1] 0.001479596 0.001326728 0.001173346 0.001024722 0.00 0884658 0.000755663
> dy_diff()
[1] 33.1218
> num_nodes()
[1] 3
> nleft
[1] 65
> nright
[1] 100
> x_left
[1] 0.726743
> x2c
[1] 1.37674
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“n" (yL),max(yL)),
xlab = "x"ylab = "y")
lines(xL[1:(nleft+1)],yL[1:(nleft+1)],lwd=2,col="b lue™)
lines(xR[2:(nright+2)],yR[2:(nright+2)],lwd=2,col= "red")
mygrid()

vV V.V +

shows an un-normalized wave function with two pieces withrge change in slope at the matching point, as indicatedéolathe
value ofdy_diff()

The functiondy_diff() used above is designed to return the difference of the apped& numerical first derivatives at the
matching poink2c implied byyL andyR, divided by the value of(x2c) . Here is our code fody_diff()

#it dy_diff() uses global yL, yR,nleft, h

#it computes numerical y’(x2c) using

#it symmetric three point method for

#it both yL and yR, and returns the difference
#it divided by y(x2c)

dy _diff = function() {
ypL = ( last(yL) - yL[nleft] ) / (2 *h)
ypR = (YR[3] - YR[1]) / (2 *h)

(ypL - ypR)/ abs (YyR[2]) }

The functionnum_nodes() has the definition:

#it num_nodes()

#it count the number of nodes in yL

#it ignore region where elements of yL are

#it tiny in magnitude.

#it takes advantage of the fact that xL elements steadily incr ease
num_nodes = function () {

x11 = x_left + xldecay
jO = which(xL > x11) [1]  ## position in XL where x > x11

n=20
for (j in jO: (length(yL) - 3) ) {if (yL[ ] * yl[+1]<0) n=n+1}
n }
We search for energy eigenvalues by seeking enekjmsch that the value returned bly_diff() is zero to within numerical

errors. A function=(E) allows us to scan energy ranges for energy eigenvalues.

## F(E)

#it energy eigenvalue if global function F(E) = O .
#it F(E) calls wf(E) then returns dy_diff(), but

## returns false if E > 0.
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F = function (E) {
if (E>0 {
cat (" in F(E), E = "E," should be negative \n")
return(FALSE)  }
wi(E)
dy_diff() }

Here is an example of usirig(E) .

> EL = seq(-0.91,-0.85,by = 0.01)

> FL = sapply(EL, F)

> head(FL)

[1] 7.19967 2.03578 -5.22871 -24.50145 -58.60732 232.5781 0
> head(EL)

[1] -0.91 -0.90 -0.89 -0.88 -0.87 -0.86

> F(-0.91)

[1] 7.19967

> F(-0.88)

[1] -24.5015

> e = uniroot(F, c(-0.91,-0.88),tol = le-16)$root; e
[1] -0.896404

A functionwf_plot(E)  generates a non-normalized numerical solution ugif{§) , makes a plot and prints out the energy and

maximum y value, the number of nodes, and the valuyoHiff() corresponding to the chosen enekyy

> wif_plot(e)
E = -0.896404 , ymax = 27.4223
number of nodes = O , dy diff = 7.44138e-14

which produces the plot

Figure 39: Zero Nodes Un-normalized Eigenfunction

The code fowf _plot(E) is

#it wf_plot (E) calls wf(E) and plot2d

## creates * un-normalized *  wave functions
H#Ht stored in global xL, yL, xR, yR.
#it prints out number of nodes in yL

#it prints out dy_diff .

wf_plot = function(E) {
wf(E)
cat (" E =" E, ", ymax = ", max(yL), "\n" )
cat (" number of nodes = ",num_nodes(), ", dy_diff = ",dy_dif f(), "\n" )
plot(0,type="n" xlim=c(min(xL),max(xR)),ylim=c(min( yL),max(yL)),
xlab = "x"ylab = "y")
lines(xL[1:(nleft+1)],yL[1:(nleft+1)],lwd=2,col="bl ue")
lines(xR[2:(nright+2)],yR[2:(nright+2)],lwd=2,col=" red")
mygrid() }
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We then create (frorgL andyR) a global normalized wave function vectpn corresponding to a global grid vecton created fronxL andxR
using the functiomormalize() . This function also computes and prints the value of the twamechanical particle position uncertaidiy:
implied by the wave function.

> normalize()
AA = 85.0069
X_mean = 1.14069
delx = 0.0455039
> fll(xn)
0.781455  2.20145 143
> fli(yn)
-3.14183e-20 0 143
> max(yn)
[1] 2.97425
> max(yL)
[1] 27.4223

The functionnormalize  uses our utility functionsimp (Simpson’s one third integration rule) angerge .

#it normalize() uses the current global xL,yL, xR, yR and
#it the utility function simp (Simpson’s 1/3 rule) to define g lobal
#it xn and yn, with the latter being normalized.
normalize = function() {
xn = ¢ ( xL[L:(length(xL) - 1)], xR[3:length(xR)] )

yn ¢ ( yL[1:(length(yL) - 1)], yR[3:length(yR)] )
##  we need xn to have odd number of elements to use simp
if (is.even ( length (xn) ) ) {
xn = xn[2 : length(xn)]
yn = yn[2 : length(yn)] }
AA = simp(xn,yn“2)
cat (" AA = "AA, "\n")
yn = yn/sqrt(AA)
X_mean = simp(xn, xn * yn'2)

cat (" x_mean = ", x_mean, "\n")

X2_mean = simp(xn, xn"2 *yn“2)

delx2 = x2_mean - Xx_mean™2 ##  this should be positive!
delx = sqrt(delx2)

cat (" delx = ", delx, "\n")

Xn <<= Xxn

yn <<- yn }

Oncenormalize() has been used to creata andyn from the current un-normalized wave function, we can use
yn_plot_current() to see the current normalized wave function.

> yn_plot_current()
ymax = 2.97425

which produces the plot
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Figure 40: Zero Node Normalized Eigenfunction
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A function yn_plot(E, xmin, xmax)

goes from a given energy to a call towf(E) andnormalize()

71

and then

makes a plot of the resulting normalized wave function in ste@, with control over the region of tleaxis for the plot.

Thus

> yn_plot(e,0.8, 1.6)

E = -0.896404
number of nodes = 0 ,
AA = 85.0069

X_mean = 1.14069
delx = 0.0455039

normalized ymax = 2.97425

dy_diff =

7.44138e-14

produces the plot

I
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Figure 41: Using yrplot(E,xmin,xmax) forkl = —0.896404

Here is an example of using_plot

for an energy which is not an energy eigenvalue. The valug afiff()

is based on the non-normalized wave function producedf(s) .

reported

> yn_plot(-0.95,0.8, 1.6)
E = -0.95

number of nodes = O ,
AA = 139.333
X_mean = 1.15457
delx = 0.0420213
normalized ymax =

3.26734

dy_diff =

16.3981

which produces the plot

Figure 42: Using yrplot(E,xmin,xmax) fork = —0.95

We see a large discontinuity in the slope of the normalizedevianction, reflected also in the large valuedgf diff()
reported in the non-normalized wave function.
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Here is the code foyn_plot

#it yn_plot(E,xmin,xmax) first calls wf(E) to create

#it un-normalized wave functions corresponding to the

#it given energy E. Then normalizes those wave functions
#it to produce the vectors xn and yn. Finally makes a plot
#it of yn over only the region (xmn, xmx) */

yn_plot = function (E,xmn,xmx)  {
wf(E)
cat " E = "E, "\n")
cat (" number of nodes = ",num_nodes(),", dy_diff = ",dy_dif f(), "\n" )
normalize()
cat (" normalized ymax = ", max(yn), "\n" )
ymn = floor( min(yn) )
ymx = 1 + floor( max (yn) )
plot(xn,yn,type = "I"ylim = c(ymn,ymx), xlim = c(xmn, xmx) ,
lwd=3,col="blue",xlab="x",ylab="y")
mygrid() }

A plot of the values ofF(E) over a wider energy range will show other candidate eneffgiegxcited states having
energies greater than the ground state (zero node statemdtgyF, = —0.896404 found above). However, use of the
function bracket(Estart,dE,Eacc) is an easier way to find candidate energy eigenvalbescket looks for the
first sign change iF(E) , and (in a normal exit) returns a pair of energies for witi) has the opposite sign. Applying
this approach to the ground state energy found above,

> out = bracket(F,-0.96,0.02,0.01)

> out

[1] -0.900 -0.895

> e = uniroot(F, out, tol = le-16)$root
> e

[1] -0.896404

> yn_plot(e,0.8,1.6)

E = -0.896404

number of nodes = O , dy_diff = -1.86035e-13
AA = 85.0069

X_mean = 1.14069

delx = 0.0455039

normalized ymax = 2.97425

which results in the same plot as we displayed above for thmalized ground state.

Here is our code fobracket

#it bracket is a modified version of bracket_basic, designed to work with
#it the function F(E) which can return FALSE.
#it bracket looks for a sign change in func,
#it starting with xx, and increasing xx by dxx each step.
#it If sign change is found, then we back up to the previous xx
#it and search with new dxx value one half of the previous value
#it normally returns [ea,eb], but if can't find change in sign ,
H#Ht then returns [0,0], and if func returns FALSE, then
#it bracket returns FALSE.
bracket = function (func,xx,dxx,xacc) {
X = XX
dx = dxx
it =20
itmax = 1000
anerror = FALSE
anerror2 = FALSE
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repeat {

it =it + 1

if (it > itmax) {
cat (" can't find change in sign \n")
anerror = TRUE
break}

x1 = X

X2 = x + dx

fl = func(x1)

if (f1 == FALSE) {
cat (" in bracket, f1
anerror2 = TRUE
break }

f2 = func(x2)

if (f2 == FALSE) {
cat (" in bracket, f2
anerror2 = TRUE
break }

if (f1 * 2 <0) {
if ( abs(dx) < xacc ) break
X = x - dx
dx = dx/2 } else x = x2 }

if (anerror) c(0,0) else if (anerror2) FALSE else c(x1,x2) }

FALSE , x1
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"dx, " \n ")

Let's usebracket to find a candidate energy for the first excited state, whidukhhave one node and be a continuous function.

> out = bracket(F,e + 0.01,0.02,0.01)
> out

[1] -0.866404 -0.861404

> e = uniroot(F, out, tol = le-16)$root
> e

[1] -0.865689

> yn_plot(e,0.8,1.6)

E = -0.865689

number of nodes = 0 , dy diff = -2.32077e+15
AA = 2.17377e+29

X_mean = 1.11923

delx = 0.0350225

normalized ymax = 3.28918

which produces the plot

Figure 43: False Energy Eigenvalue #6r= —0.865689

The plot shows a discontinuous zero node wave function anckiborted value aly _diff() is not a tiny number, agdy diff()
should be for a valid energy eigenvalue case. We also notevthhad already found a valid zero node energy eigenvalue.
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Continuing with a search for energy eigenvalues ubiragket
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> out = bracket(F,e + 0.01,0.02,0.01)
> out

[1] -0.710689 -0.705689

> e = uniroot(F, out, tol = le-16)$root
> e

[1] -0.71066

> yn_plot(e,0.8,1.6)

E = -0.71066

number of nodes = 1 , dy_diff = -1.63498e-13
AA = 0.0295798

X_mean = 1.18063

delx = 0.0807403

normalized ymax = 2.60007

which produces a valid one node wave function

Figure 44: One Node Wave Function fBr= —0.71066

This one node wave function is continuous and the valuyofliff()

is a tiny number.

We will again find a spurious one node solution at a slightgyhleir energy.

> out = bracket(F,e + 0.01,0.02,0.01); out
[1] -0.71566 -0.71066

> out = bracket(F,e + 0.02,0.02,0.01); out
[1] -0.68566 -0.68066

> e = uniroot(F, out, tol = le-16)$root; e
[1] -0.684654

> yn_plot(e,0.8,1.6)

E = -0.684654

number of nodes = 1 , dy diff = 1.353e+15
AA = 3.70704e+25

X_mean = 1.15311

delx = 0.0706492

normalized ymax = 2.5595

which shows a spurious one node wave function

Figure 45: False Energy Eigenvalue for= —0.684654

The plot shows again a discontinuous wave function, coarging to the very large value dfy_diff()
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Now that we see the pattern of valid energy eigenvalues, weacde a functionlevels(Emin,Emax,dE, Eacc) ,
which usesbracket with the added filter that no sign changeF(E) is taken seriously unless the associated wave
function has one more node than the last energy eigenvalunel fo

#it levels(Emin,Emax,dE, Eacc ) returns a vector of energy le vels with
#it increasingly larger number of nodes in energy range (Emin , Emax).
#it uses F(E) to find roots, and calls wf, hum_nodes() and dy_d iff() for each root found,
## Uses bracket and uniroot.
#it The arguments (dE, Eacc) are used to call bracket, and do no t describe
#it the accuracy of the energy levels found.
#it Once a good energy e.v. is found we look for the region of
#it energies with one more node and search there.
#it Code contains an interactive continue or stop decision.
levels = function (Emin,Emax,dE, Eacc ) {
rmax = 20
eL = rep(NA, rmax) ## vector el will hold energy eigenvalues f ound
e = Emin
nlast = -1
j=1
repeat {
if (6 > Emax | | > rmax) break ## exit do loop
cat ("------m-m-mmm- levels --------mmmmmmeeen \n")
cat (" nlast = ", nlast,"\n")
cat (" Estart = ", e," dE = ", dE, "\n" )

out = bracket(F,e, dE, Eacc)
cat (" ea = ",out[1]," eb = ",out[2],"\n")
if (out[1] == 0) {

cat (" can't find bracket interval \n")

cat (" e = "e, "\n")

break }
eroot = uniroot(F, out, tol = 1le-16)$root
cat (" eroot = ", eroot, "\n")
wf(eroot)
nn = num_nodes()
cat (" number of nodes = ", nn, "\n")
cat (" dy_diff at x = x2c is ", dy_diff(), "\n" )
elL[ j] = eroot
nlast = nn
j=i+1
r = readline (" input ¢ or s \n ")
if (r =="s") break ## exit do loop
#it search for an e value greater than eb which produces
#it a wave function with nn + 1 nodes
enext = out]2] + dE
repeat {

wf(enext)

if (num_nodes() > nlast) {

e = enext
break } else enext = enext + dE } }  ## end of outer repeat loop

H#it remove NA’'s at end of vector eL
eL[lis.na(eL)] }

Here is an example of use:

> EL = levels(-0.95, -0.6, 0.02,0.01)

levels
nlast = -1
Estart = -0.95 dE = 0.02
ea = -09 eb = -0.895
eroot = -0.896404
number of nodes = 0

dy diff at x = x2c is -1.86035e-13
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input ¢ or s
c
levels
nlast = 0
Estart = -0.835 dE = 0.02
ea = -0.715 eb = -0.71
eroot = -0.71066
number of nodes = 1
dy diff at x = x2c is -1.63498e-13
input ¢ or s
c

levels
nlast = 1
Estart = -0.67 dE = 0.02
ea = -0555 eb = -0.55
eroot = -0.551436
number of nodes = 2
dy diff at x = x2c is 1.72142e-13
input ¢c or s
c
> EL
[1] -0.896404 -0.710660 -0.551436

We can then usgn_plot(E,xmin,xmax) to both construct the vectossy andyn of the normalized wave function
and make a plot. We save the normalized wave functions bgrasgnt statements suchya® = xn, andyn0 = yn,
before another call tgn_plot defines the wave functions corresponding to a differentggndn the following, we do
not show the plots produced by the calls/to plot

> EO = EL[1]; EO
[1] -0.896404
> yn_plot(E0,0.8,1.6)
E = -0.896404
number of nodes = 0 , dy_diff = -1.86035e-13
AA = 85.0069
X_mean = 1.14069
delx = 0.0455039
normalized ymax = 2.97425
> xn0 = xn; fll(xn0)
0.781455 2.20145 143
> yn0 = yn; fli(yn0)
-3.14183e-20 0 143

We continue in this manner with the first excited state ands#do®nd excited state.

> E1 = EL[2]; E1
[1] -0.71066
> yn_plot(E1,0.8,1.6)
E = -0.71066
number of nodes = 1 , dy diff = -1.63498e-13
AA = 0.0295798
X_mean = 1.18063
delx = 0.0807403
normalized ymax = 2.60007
> xnl = xn; fli(xnl)
0.754761 2.27476 153
> ynl = yn; flilynl)
2.83787e-25 0 153
> E2 = EL[3]; E2
[1] -0.551436
> yn_plot(E2,0.8,1.6)
E = -0.551436
number of nodes = 2 , dy diff = 1.72142e-13
AA = 1.24981e-05
X_mean = 1.2266
delx = 0.108671
normalized ymax = 2.44523
> xn2 = xn; fll(xn2)
0.730536 2.35054 163
> yn2 = yn; flilyn2)
0 0 163
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We can then combine the plots for the wave functions of thessetiowest ly

EVELS AND WAE FUNCTIONS

ing states.

77

plot(0,type = "n"xlim = ¢(0.8,1.6),ylim = c¢(-3,3),xlab= "x"ylab=
lines(xn0,yn0,lwd=2,col="blue")
lines(xnl,ynl,lwd=2,col="red")
lines(xn2,yn2,lwd=2,col="green")
mygrid()
legend("bottomright”,col = c("blue","red","green"),
legend = c("EO0", "E1", "E2"), lwd=2,cex=1.5)

+ V VVVYVYV

which produces a plot of the numerical normalized wave fionstdescribing the lowest three energy levels.
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Figure 46: Lennard-Jones: Wave Functions for Lowest Thresrdy Levels

Just for practice, we can write these three wave functiomasfile in the local folder, and then rest&;tread in the file contents, and

make a plot based on the file contents.

The simplest approach is to usave(filePath,al,a2,a3,...) , where objectal, a2, etc are object names bound to quan-
tities known to R. The names and the objects bound to the namestored in a binary file format in the file requested (whgh i

created if it does not yet exist, and overwritten if it alrgadtists).

One can usiad toload in that file into a new session, and the names and shjgitthen be available for use in your new Maxima
session. In the following, we first save the wave functiorsfilexy.rda . We then usem to remove knowledge of those objects
from the current session. We then Usad to recover knowledge of those objects, which can then be asééfore, for example to

make plots and make calculations.

> save(xn0,yn0,xnl,yn1,xn2,yn2, file = "xy.rda")
> rm(xn0,yn0,xn1,yn1,xn2,yn2)
> fll(xn0)
Error in fll(xn0) : object 'xn0’ not found
> load("xy.rda")
> fll(xn0)
0.781455  2.20145 143

For example, we can remake the plot of all three wave funstion

> plot(0,type = "n"xlim = ¢(0.8,1.6),ylim = c(-3,3),xlab= "x"ylab=
> lines(xn0,yn0,lwd=2,col="blue")

> lines(xnl,ynl,lwd=2,col="red")

> lines(xn2,yn2,lwd=2,col="green")

> mygrid()

> legend("bottomright”,col = c("blue","red","green"),

+ legend = c("EO0", "E1", "E2"), lwd=2,cex=1.5)

and we get the same plot as above.

A proper exploration of the likely accuracy of the energyelevfound in this approach would involve experimenting wvifith values
of xldecay , x2decay , and the grid siz&. One can also modify the code so that the use of a five point gtrifiormula for the

first derivative is used, instead of the present three pgimnsetric formula.



