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Preface  1 

In Stat03-Poisson.wxmx  we discuss the discrete Poisson(λ) probability distribution and its 
application, using Maxima tools and methods. This is the third worksheet in my Statistics 
with Maxima section.

Edwin L. (Ted) Woollett
https://home.csulb.edu/~woollett/
April 18, 2024
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References  2 

In our series Statistics with Maxima we have used some examples and explanations (with 
much editing and additions) from:

Roger Barlow, Statistics: A Guide to the Use of Statistical Methods in the Physical Sciences,
    John Wiley, 1989,

Ch. 3 Reagle & Salvatore [RS], Statistics and Econometrics, 2nd ed, Schaum's Outlines,
      2011,  McGraw Hill,

Ch. 8 Fred Senese [FS], Symbolic Mathematics for Chemists: A Guide for Chemists, 2019,
      Wiley,

Louis Lyons, Statistics for Nuclear and Particle Physics, 1986, Cambridge Univ. Press,

Luca Lista,  'Statistical Methods for Data Analysis in Particle Physics', 
                          Lecture Notes in Physics 909, 2016,  Springer-Verlag,

Frederick James, 'Statistical Methods in Experimental Physics', 2nd ed., 
                            2006, World Scientific.

In this Stat03-Poisson.wxmx worksheet we use examples from:
       https://www.statology.org/poisson-distribution-real-life-examples/
       https://www.statology.org/poisson-distribution-calculator/

https://online.stat.psu.edu/stat414/lesson/12

(%o1) 
C:/maxima−5.43.2/share/maxima/5.43.2/share/descriptive/descriptive.mac

(%o2) C:/maxima−5.43.2/share/maxima/5.43.2/share/distrib/distrib.mac

load (descriptive);
load (distrib); 
fpprintprec : 6$
ratprint : false$
logexpand : all$

(%i5)

Homemade functions fll, head, tail, Lsum are useful for looking at long lists.
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fll ( aL) := [ first (aL), last (aL), length (aL) ]$
declare (fll, evfun)$
head(L) := if listp (L) then rest (L, - (length (L) - 3) ) else 
      error("Input to 'head' must be a list of expressions ")$
declare(head,evfun)$
tail (L) := if listp (L) then rest (L, length (L) - 3 )  else 
       error("Input to 'tail' must be a list of expressions ")$
declare(tail,evfun)$
Lsum (aList) := apply ("+", aList)$
declare (Lsum, evfun)$

(%i13)

Discrete Distributions Defined  3 

From www.investopdedia.com:

"A discrete probability distribution counts occurrences that have countable or finite outcomes.

Discrete distributions contrast with continuous distributions, where outcomes can fall 
anywhere on a continuum.

Common examples of discrete distribution include the binomial, Poisson, and Bernoulli 
distributions.

These distributions often involve statistical analyses of "counts" or "how many times" an 
event occurs.

In finance, discrete distributions are used in options pricing and forecasting market shocks 
or recessions."
---------------------------------------------------------------------------------------------
From http://www.stat.yale.edu/Courses/1997-98/101/ranvar.htm:

"If a random variable can take only a finite number of distinct values, then it must be discrete.
Examples of discrete random variables include the number of children in a family, the Friday 
night attendance at a cinema, the number of patients in a doctor's surgery, the number of 
defective light bulbs in a box of ten."

What Is a Discrete Random Variable?  4 
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Quoting Luca Lista (Sec. 1.1):
"Many processes in nature have uncertain outcomes. This means that their result cannot be 
predicted before the process occurs. A random process is a process that can be reproduced, 
to some extent, within some given boundary and initial conditions, but whose outcome is 
uncertain. This situation may be due to insufficient information about the process intrinsic 
dynamics which prevents to predict its outcome, or lack of sufficient accuracy in reproducing 
the initial conditions in order to ensure its exact reproducibility. Some processes like 
quantum mechanics phenomena have intrinsic randomness. This will lead to possibly different 
outcomes if the experiment is repeated several times, even if each time the initial conditions 
are exactly reproduced, within the possibility of control of the experimenter. Probability is a 
measurement of how favored one of the possible outcomes of such a random process is 
compared with any of the other possible outcomes."

A coin toss is "random" because we are ignorant of the 'initial conditions'. Repeated trials tell 
us something about how those initial conditions vary between trials

For the purposes of calculating things for experimental physics, we need physical probability. 
In particular we need 'frequentist probability':  
   "Probability is the frequency with which a particular outcome occurs in repeated trials."
    P = (number of occasions on which that outcome occurs)/(total number of measurements).

Quoting L. Lyons, Sec. 2.1:
"In many situations we deal with experiments in which the essential circumstances are kept
constant, and yet repititions of the experiment produce different results. Thus the result of an
individual measurement or trial may be unpredictable, and yet the possible results of a series 
of such measurements have a well defined distribution."

What about events that can't be repeated? They don't have probabilities.
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Quoting [RS] Sec. 3.3:

"A random variable is a variable whose values are associated with some probability of being 
observed. A discrete (as opposed to continuous)  random variable is one that can assume only 
finite and distinct values.  The set of all possible values of a random variable and its associated 
probabilities is called a probability distribution. The sum of all probabilites equals 1."

Quoting 
https://saylordotorg.github.io/text_introductory-statistics/s08-discrete-random-variables.html,

"The probability distribution of a discrete random variable X is a listing of each possible value x 
taken by X along with the probability P(x) that X takes that value in one trial of the experiment.

The mean μ of a discrete random variable X is a number that indicates the average value of X
over numerous trials of the experiment. It is computed using the formula μ=Σx P(x).

The variance σ^2 and standard deviation σ of a discrete random variable X are numbers that 
indicate the variability of X over numerous trials of the experiment. They may be computed using 
the formula σ^2 = (Σx^2 P(x) ) − μ^2, taking the square root to obtain σ."

Mean and Variance of Discrete Data Set  5 

Consider a data set that contains M unique discrete values x_k, and assume the value x_k 
occurs with frequency f_k. Let N equal the sum of the frequencies.
    N = sum (f_k, k, 1, M).
The mean 
    <x> = sum (f_k*x_k, k, 1, M) / N.
The variance
       Var(x) = sum ( f_k* (x_k - <x>)^2, k, 1, M )/ N.
The standard deviation is the square root of the variance.

The Discrete Poisson(λ) Distribution  6 

Recall our definition of the Binomial (n, p) distribution in Stat02-Binomial.wxmx:

The binomial distribution is used to find the probability of k 'successes' Pb (k; n, p)
 in n trials of the same experiment when (1) there are only two possible and 
mutually exclusive outcomes, (2) the n trials are independent, and (3) the probability of 
of 'success', p, remains constant in each trial.
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Quoting Roger Barlow, Sec. 3.3,

"The binomial distribution describes cases where particular outcomes occur in a certain number 
of trials, n [of the same experiment/measurement]." 

"The Poisson distribution describes cases where there are still particular outcomes [observations] 
but no idea of the number of trials [or measurements carried out under the same conditions]; 
instead these are sharp events occurring in a continuum. For example, during a thunderstorm 
there will be a definite number of flashes of lightning (sharp events), but it is meaningless to ask 
how often there was *not* a flash."

"A Geiger counter placed near a radioactive source will produce definite clicks, but not definite 
non-clicks. If in such an experiment one knows that the average number of events is, say, 
ten a minute, then in a particular minute one expects on average ten events, though intuitively 
one feels that nine or eleven would be unremarkable… but suppose there were five or fifteen? 
Is that compatible, or has something changed? We need to know the probability of obtaining a 
particular number of events, given the average number. This can be analysed by taking the limit 
of the binomial distribution, in which the number of tries [of the same measurement/trial], n, becomes 
large while at the same time the probability p becomes small, with their product constant."

"Suppose that on average λ events would be expected to occur in some interval. Split the interval up 
into n very small equal sections, so small that the chance of getting two events in one section can be 
discounted. Then the probability that a given section contains an event is p = λ/n. The probability 
that there will be k events in the n sections of the interval is given by the binomial formula:

 Pb (k; n, p) = ( n! / (k! * (n - k)! ) * p^k * (1 - p)^(n - k)  
                    = ( n! / (k! * (n - k)! ) * (λ/n)^k * (1 - λ/n)^(n - k)."

As n --> ∞  with k finite, this expression becomes the Poisson probability formula,  the probability
of obtaining exactly k events if the mean expected number is λ: [where λ = p*n]

  P (k, λ) = exp (- λ) * λ^k / k! .

For a derivation in detail see (where k --> x): https://online.stat.psu.edu/stat414/lesson/12/12.1
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Quoting https://online.stat.psu.edu/stat414/lesson/12/12.1, with some light editing,

"Let the discrete random variable k denote the number of times an event occurs in an interval of 
time (or space). Then k *may* be a Poisson random variable with k = 0, 1, 2, ....."

"Examples: 
1.)  Let k equal the number of typos on a printed page. (This is an example of an interval of 
space —  the space being the printed page.
2.)  Let k equal the number of cars passing through the intersection of Allen Street and College 
    Avenue in one minute. (This is an example of an interval of time — the time being one minute.)
3.)   Let k equal the number of Alaskan salmon caught in a squid driftnet. (This is again an example 
        of an interval of space — the space being the squid driftnet.)
4.)   Let k equal the number of customers at an ATM in 10-minute intervals.
5.)   Let k equal the number of students arriving during office hours."

"Poisson Random Variable

If k is a Poisson random variable, then the probability mass function [probability distribution
 function] is:

    f(k) = exp( - λ) * λ^k / k!
for k = 0, 1, 2, ... and λ > 0, where λ will be shown later to be both the mean and the variance of 
the distribution. .... Also, note that there are (theoretically) an infinite number of possible Poisson 
distributions. Any specific Poisson distribution depends on the parameter λ."

pdf_poisson (k, λ),  mean_poisson (λ)  6.1 

pdf_poisson (k, λ) is the probability of counting exactly k events when the average number of 
events observed in a trial is λ and when the distribution of events is described by the Poisson 
distribution. In particular, the outcome of each trial is completely independent of the result 
observed in the previous trial.

mean_poisson (λ) returns λ.

(%o14) λ
(%o15) λ

λ;
mean_poisson (λ);

(%i15)
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Quoting RS in Sec. 3.4: (They shift language from 'event' to 'success'.)
"The Poisson distribution is another discrete probability distribution. It is used to determine the 
probability of a designated number of 'successes' per unit of time, when the events or 
successes are independent, and the average number of successes per unit of time remains 
constant. Then

       P(k) = λ^k*exp (-λ) / k!

where k is the designated number of successes, P(k) is the probability of k successes 
(k = 0, 1, 2, 3, ...),  and λ is the average number of successes per unit of time."

The mean is λ, the variance is λ, and one standard deviation is sqrt (λ).

Quoting Fred Senese in Sec. 8.2.2:

"When the sample size is large, the discrete probability density often converges to a smoothly 
varying 'limiting distribution'. Limiting distributions can be used to compute probabilities directly."

"Suppose we are interested in measuring a 'count': [for example] the number of photons 
emitted by a chemiluminescent reaction, or [as another example] the number of particles 
emitted by a radioactive substance." Each photon or particle which appears is the result of 
a random event, with a random interval of time between successive events, "but they have
a fixed  [characteristic] average 'rate' r" over time; r has units (number/time)."

"If we measure the number of [such] events [which] occur over [a specified] time t 
[getting a 'count' each time we repeat the measurement], the 'average count' λ will be:

     λ = r * t = (number/time)*time = number = dimensionless,

after making a large number n of measurments of this average count."

"Inverting this equation, we have an experimental value for the 'fixed average rate' of arrival
    r = λ / t."

"[It can be shown that] the probability of actually finding exactly k events in any given 
measurement is given by P(k, λ):
         
          P (k, λ) = λ^k * exp (- λ) / k!

known as the 'Poisson distribution', an example of a 'probability distribution'."

"Since k is an integer (the number of counts observed in a trial), P(k, λ) is a discrete probability 
distribution, and it can be proved that for a data series xL of events described by the Poisson 
distribution, <k> = λ, var[k] = λ, and hence σ[k] = sqrt (λ) == λ^(1/2)."
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Quoting Luca Lista in 'Statistical Methods for Data Analysis in Particle Physics', 
Lecture Notes in Physics 909:

"A discrete variable k is said to be a Poissonian variable if it obeys the Poisson
distribution defined below for a given value of the parameter λ:
   P(k; λ) = λ^k * exp (- λ)/k! "

(%o16) 15

mean_poisson (15);(%i16)

"For example, suppose we want to know how likely it will be for k = 10 molecules to arrive 
over a 1μs  interval [of time] at the surface of a sensor." If the average rate r has been 
measured to be r = 15 molecules/μs, and we let t = 1μs, then λ = r * t = 
(15 molecules/μs) * 1 μs = 15 molecules = average count over 1 μs. We then use the 
poisson probability distribution to determine the probability P(10) of actually finding 
k = 10 molecules arriving in 1 μs in a given measurement:    

(%o17) 0.0486108
(%o18) 0.0486108

( (15^10) / factorial (10) ) * exp (- 15), numer;
pdf_poisson (10, 15), numer;

(%i18)

The chance of measuring exactly 10 molecules arriving in a given micro-second is about 5%.

"Let's plot the Poisson distribution in this case λ  = 15 . After building a list of 30  [ k, P(k, λ) ] 
'points' with varying n and with λ = 15, we plot them using the impulses style: "

The maximum value will be for n = 15.

(%o19) 0.102436

pdf_poisson (15, 15), numer;(%i19)

(%o21) [ [ 1 ,4.58853 10−6 ] , [ 30 ,2.21137 10−4 ] ,30 ]

(%o22) [ [ 1 ,4.58853 10−6 ] , [ 2 ,3.4414 10−5 ] , [ 3 ,1.7207 10−4 ] ]

(%o23) [ [ 28 ,8.55061 10−4 ] , [ 29 ,4.42273 10−4 ] , [ 30 ,2.21137 10−4 ] ]

mypoints :   makelist ( [k, float (pdf_poisson (k, 15))] , k, 1, 30)$
fll (mypoints);
head (mypoints);
tail (mypoints);

(%i23)
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(%t24) 

wxdraw2d ( xrange = [0, 30], yrange = [0, 0.12], 
    points_joined = impulses,
    title = "pdf poisson (k, 15)",
    xlabel = "k", ylabel = "probability", grid = true,
    background_color = light_gray,
    line_width = 2, color = red,
    points (mypoints) )$

(%i24)

"The Poisson distribution is discrete (the count k is an integer). It isn't quite symmetric; it tails 
off faster on the left than it does on the right. The mean of the distribution is λ. We can 
describe the 'width' of the distribution in terms of the root-mean-square [rms] deviation from 
the mean (which is called the 'standard deviation' [sd] when there are a large number of trials)."

Since k is an integer (the number of counts observed in a trial), P(k, λ) is a discrete probability 
distribution, and it can be proved that for a data series xL of events described by the Poisson 
distribution, <k> = λ, var[k] = λ, and hence σ[k] = sqrt (λ) == λ^(1/2).

  " The Poisson distribution  P(k, λ) is a built-in Maxima function pdf_poisson (k, λ) = probability 
of counting exactly k events". The pdf prefix stands for 'probability distribution function'.

std_poisson(λ), cdf_poisson (k1, λ)  6.2 

Quoting [RS]:
"The width of the distribution is characterized by the standard deviation σ. The interval 
[λ - σ, λ + σ] encompasses roughly two-thirds of all of the data. For the Poisson distribution,
   σ = sqrt (λ) = 'standard deviation of the Poisson distribution' " and we can use the Maxima 
function std_poisson (λ).
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(%o25) 15
(sigma) 3.87298

std_poisson (15);
sigma : std_poisson (15), numer;

(%i26)

"The 'cumulative distribution function' cdf_poisson (k1, λ) returns the sum of all probabilities 
for 0 to k1 counts, which computes the probability P (k <= k1) that the actual count observed 
will lie in the interval [0, k1].  Let's use it to compute the probability of getting a count 
[somewhere in the interval] between λ - σ and λ + σ."

The number we want is the 'area under the curve' from  μ - σ to μ + σ, which is given by the 
difference:

(%o27) 0.63472

cdf_poisson (15 + sigma, 15) - cdf_poisson (15 - sigma, 15), numer;(%i27)

which is 'roughly two thirds'.

Let's compare cdf_poisson (k1, λ) with sum (pdf_poisson (k, λ), k, 0, k1).

compare (kk, λ) := 
  [kk, float (cdf_poisson (kk, λ)), float (sum (pdf_poisson (k, λ), k, 0, kk))]$

(%i28)

(%o29) [ 5 ,0.00279243 ,0.00279243 ]

compare (5, 15);(%i29)

[ 12 ,0.267611 ,0.267611 ]  

[ 13 ,0.363218 ,0.363218 ]  

[ 14 ,0.465654 ,0.465654 ]  

[ 15 ,0.56809 ,0.56809 ]  

[ 16 ,0.664123 ,0.664123 ]  

[ 17 ,0.748859 ,0.748859 ]  

[ 18 ,0.819472 ,0.819472 ]  

for k : 12 thru 18 do print (compare (k, 15))$(%i30)

cdf_poisson (k1, λ) Use Example 1  6.2.1 

Quoting Example 12.2 on:    https://online.stat.psu.edu/stat414/lesson/12/12.2 
 with some light editing:
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"Let k equal the number of typos on a printed page with a mean of 3 typos per page."

Recall that the mean (ie., the average) number of counts is the same as the parameter λ,
so in this example λ = 3.

"A.)  What is the probability that a randomly selected page has at least one typo on it?
            We can find the requested probability directly from the pdf."

The probability that k is at least equal to 1 is:
   P (k >= 1 )  = probability the number of typos actually found on a random page is k  = 1, 2, 3, ...
              but  P (k < 1)  +  P (k >= 1) = 1, so 
    P (k >= 1) = 1 - P (k < 1) = 1 - cdf_poisson (0, λ), but 
               cdf_poisson (0, λ) =  pdf_poisson (0, λ).

(%o31) 3.05902 10−7

(%o32) 3.05902 10−7

cdf_poisson (0, 15), numer;
pdf_poisson (0, 15), numer;

(%i32)

Hence P ( k >= 1 ) = 1 - pdf_poisson (0, λ).

(%o33) 0.950213

1 - pdf_poisson (0, 3), numer;(%i33)

"That is, there is just over a 95% chance of finding at least one typo on a randomly selected 
page when the average number of typos per page is 3."

"B.)  What is the probability that a randomly selected page has at most one typo on it?"

P (k <= 1)  = P (k = 0) + P (k = 1) = cdf_poisson (1, λ), so

(%o34) 0.199148

cdf_poisson (1, 3), numer;(%i34)

"That is, there is just under a 20% chance of finding at most one typo on a randomly selected page 
when the average number of typos per page is 3."

"C.)  What is the probability that three randomly selected pages have more than eight typos on it?"
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"Solving this problem involves taking one additional step. Recall that n denotes the number of 
typos on one printed page."

"Let's define a new random variable y that equals the number of typos on three printed pages. 
If the mean of k is 3 typos per page, then the mean of y is:
    λy = 3 typos per one page * 3 pages = 9 typos per 3 pages."

"Finding the desired probability then involves finding
               P ( y > 8 ),"   and
P (y <= 8) + P (y > 8) = 1,  so
       P (y > 8)  = 1 - P (y <= 8) = 1 - cdf_poisson (8, λy) = 1 - cdf_poisson (8, 9).

(%o35) 0.544347

1 - cdf_poisson (8, 9), numer;(%i35)

"..... there is a 54.4% chance that three randomly selected pages would have more than 
    eight typos on it."

cdf_poisson (k1,  λ)  Use Example 2, 
  Approximating the Binomial Distribution

  6.2.2 

Quoting loosely from Example 12.3 in
           https://online.stat.psu.edu/stat414/lesson/12/12.4

"Five percent (5%) of Christmas tree light bulbs manufactured by a company are defective. The 
company's Quality Control Manager is quite concerned and therefore randomly samples 100 bulbs 
coming off of the assembly line. "

"Let k denote the number in the sample that are defective. What is the probability that the sample 
contains at most three defective bulbs?"

Every sample of n = 100 light bulbs from the assembly line has the same average number of 
defective bulbs (we assume). The average number of defective light bulbs in a sample of 100 bulbs 
is λ = n*p = 100*0.05 = 5.  Let k = the number of defective bulbs found in a sample of 100 bulbs 
for  which λ = 5.

We are asked  to find P (k <= 3)  = P(0) + P(1) + P(2) + P(3) = cdf_poisson (3, 5)

(%o36) 0.265026

cdf_poisson (3, 5), numer;(%i36)

"... there is a 26.5% chance that a randomly selected batch of 100 bulbs will contain at most 3 
defective bulbs."
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Using the binomial distribution P(k <= 3) = cdf_binomial (3, 100, 0.05)."

(%o37) 0.257839

cdf_binomial (3, 100, 0.05);(%i37)

which is quite close to 0.265 gotten using the Poisson distribution with λ = n*p = 100*0.05 = 5.

"But, if you recall the way that we derived the Poisson distribution,... we started with the binomial 
distribution and took the limit as n approached infinity. So, it seems reasonable then that the 
Poisson distribution would serve as a reasonable approximation to the binomial distribution when 
your value of n trials is large (and therefore, p is small). "

You then approximate Binomial (n, p) with Poisson (λ = n*p).

"It is important to keep in mind that the Poisson approximation to the binomial distribution works 
well only when n is large and p is small. In general, the approximation works well if n >= 20 and 
p <= 0.05, or if n >= 100 and p <= 0.1."
.

Loosely quoting [RS], p. 40:
"The Poisson distribution can be used as an approximation to the binomial distribution when n is 
large (a large number of independent trials or a large sample) and p or (1-p) is small: say, n >= 30 
and n*p < 5 or n*(1-p) < 5."

quantile_poisson (q, λ)  6.3 

quantile_poisson(q, λ) returns the number of events counted with probability q, as long
as q is an element of the numbers produced by cdf_poisson (k, λ).

From the Maxima manual:

quantile_poisson (q, λ) returns the q-quantile of a Poisson(λ) random variable, with λ >0; 
in other words, this is the inverse of cdf_poisson. Argument q must be an element of [0,1].

(%o38) 0.363218

cdf_poisson (13, 15), numer;(%i38)

(%o39) 13

quantile_poisson (%, 15);(%i39)
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0  3.05902 10−7  0  

1  4.89444 10−6  1  

2  3.93084 10−5  2  

3  2.11379 10−4  3  

4  8.56641 10−4  4  
5  0.00279243  5  
6  0.0076319  6  
7  0.0180022  7  
8  0.0374465  8  
9  0.0698537  9  
10  0.118464  10  
11  0.184752  11  
12  0.267611  12  
13  0.363218  13  
14  0.465654  14  
15  0.56809  15  

for k:0 thru 15 do (
    qq : float (cdf_poisson (k, 15) ),
    print (k, qq, quantile_poisson (qq, 15) )) $

(%i40)

poissonCalc (k1,  λ)  6.4 

Let's first use the online poisson distribution probability calculator at the webpage:
https://www.statology.org/poisson-distribution-calculator/ 

Here is the output for the case n = 5, λ = 15.

P(X = 5): 0.00194

P(X < 5): 0.00086

P(X ≤ 5): 0.00279

P(X > 5): 0.99721

P(X ≥ 5): 0.99914

We are going to check these results using the Maxima functions, and in the process get the
path needed to define our own Maxima function, poissonCalc (k, λ).

fpprintprec : 5$(%i41)
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(%o42) 0.0019358

pdf_poisson (5, 15), numer;(%i42)

(%o43) 8.5664 10−4

cdf_poisson (4, 15), numer;(%i43)

(%o44) 0.0027924

cdf_poisson (5, 15), numer;(%i44)

(%o45) 0.99721

1 - cdf_poisson (5, 15), numer;(%i45)

(%o46) 0.99914

1 - cdf_poisson (4, 15), numer;(%i46)

These answers confirm those supplied by the online calculator. We will use the same
commands in our Maxima function poissonCalc (n, λ).

poissonCalc (kk, λ) := 
block ( 
    print (" "),
    print (sconcat (" For k = ", kk, ",   λ = ", λ, ",  the probabilities are:")),
    print ("  "),
    print (sconcat (" P ( k = ", kk, " )   : ", float (pdf_poisson (kk,  λ)) )), 
    print (sconcat (" P ( k < ", kk, " )   : ", float (cdf_poisson (kk - 1, λ)) )), 
    print (sconcat (" P ( k <= ", kk, " ) : ", float (cdf_poisson (kk,  λ)) )), 
    print (sconcat (" P ( k > ", kk, " )   : ", float (1 -   cdf_poisson (kk,   λ)) )), 
    print (sconcat (" P ( k >= ", kk, " ) : ", float (1 -  cdf_poisson (kk - 1,  λ)) )), 
    done )$

(%i47)

Here we try out this function:

  
 For k = 5,   λ = 15,  the probabilities are:  
   
 P ( k = 5 )   : 0.0019358  
 P ( k < 5 )   : 8.5664e−4  
 P ( k <= 5 ) : 0.0027924  
 P ( k > 5 )   : 0.99721  
 P ( k >= 5 ) : 0.99914  

poissonCalc (5, 15)$(%i48)

So  our homemade function returns what we expect in this example.
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FS Ex 1: Number of Cars Through Intersection 12 noon - 1 pm  6.5 

This is a combination of 'Problem 2' and 'Problem 3' on Fred Senese's Ch. 8 discrete pdf 
worksheet. Between noon and one o’clock, an average of 25 cars pass through a particular 
intersection.

A) What is the chance that exactly 25 cars pass through the intersection on a particular
day?

In this example each trial is an observation of the number of cars which pass through the
chosen intersection (in the hour 12 noon to 1 pm), each day's trial is completely independent 
of any other day's trial (we assume) and the average number has been measured to be 
λ = 25 cars. We have then an experimental value for the 'fixed average rate' of passage of 
cars through the intersection given by r = λ/delta_t = 25 cars/hour, which is assumed to be 
the same each day.

pdf_poisson (k, λ) is the probability of counting exactly k events when the average number of 
events observed in a trial is λ and when the distribution of events is described by the 
Poisson distribution. In particular, the outcome of each trial is completely independent of the 
result observed in the previous trial.

(%o49) 0.079523

pdf_poisson (25, 25), numer;(%i49)

So about an 8% chance exactly 25 cars pass through the specified intersection on any 
particular day.

B) What is the chance that fewer than 25 cars pass through the intersection?

C) What is the chance that more than 25 cars pass through the intersection?

Both parts B and C can be answered with our function poissonCalc (k1,  λ).

  
 For k = 25,   λ = 25,  the probabilities are:  
   
 P ( k = 25 )   : 0.079523 
 P ( k < 25 )   : 0.4734  
 P ( k <= 25 ) : 0.55292  
 P ( k > 25 )   : 0.44708  
 P ( k >= 25 ) : 0.5266  

poissonCalc (25, 25)$(%i50)
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In words, the chance that fewer than 25 cars pass through the intersection on a given day 
is 47% and the chance that more than 25 cars pass through the intersection on a given day 
is 45%.

D) There is a 95% chance that anywhere from zero to how many cars will pass through
the intersection?

(%o51) 33

quantile_poisson (0.95, 25);(%i51)

Bearing in mind that quantile_poisson (q, λ) is only the inverse of cdf_poisson (k, λ) if q 
belongs to the discrete set of numbers produced by cdf_poisson (k, λ) for k = 0, 1, 2,..., we 
need to explore the values of cdf_poisson (n, 25) for k near the integer 33.

(%o52) 0.92854
(%o53) 0.95022
(%o54) 0.96616

cdf_poisson (32, 25), numer;
cdf_poisson (33, 25), numer;
cdf_poisson (34, 25), numer;

(%i54)

So we can be 95% confident that anywhere from zero to 33 cars will pass through the
chosen intersection during the noon hour on any given day (the actual count observed will lie in 
the interval [0, 33] ).

E)  Make an impulse plot of the probability density distribution for the cars passing through 
the intersection in the previous problem. Show the probabilities for 0 to 50 cars in your plot.

The average is 25 and the standard deviation is the square root of the average (for a 
Poissonian variable). We will add the plot of pdf_normal (x, 25, 5) to the plot.

(%o55) 25
(%o56) 5

mean_poisson (25);
std_poisson (25);

(%i56)

(%o57) 0.079523

pdf_poisson (25, 25), numer;(%i57)
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(%o59) [ [ 0 ,1.3888 10−11 ] , [ 50 ,3.6022 10−6 ] ,51 ]

(%o60) [ [ 0 ,1.3888 10−11 ] , [ 1 ,3.472 10−10 ] , [ 2 ,4.34 10−9 ] ]

(%o61) [ [ 48 ,1.412 10−5 ] , [ 49 ,7.2043 10−6 ] , [ 50 ,3.6022 10−6 ] ]

mypoints : makelist ([k, pdf_poisson (k, 25)], k, 0, 50), numer$
fll (mypoints);
head (mypoints);
tail (mypoints);

(%i61)

We will only show the interval [10, 45] to get a better plot.

(%t62) 

wxdraw2d (xrange = [10, 45], yrange  = [0, 0.08], points_joined = impulses,
    xlabel = "number of cars", ylabel = "probability", 
    title = "pdf poisson (k, 25) (red), pdf normal (x, 25, 5) (black) ",
    grid = true, color = red, line_width = 2,
    background_color = light_gray, points (mypoints),
    color = black, line_width = 1, 
    explicit (pdf_normal (x, 25, 5), x, 10, 45) )$

(%i62)

FS Ex 2: Number of Particles Emitted by Source over del_t  6.6 

This is Problem 5 on Fred Senese's Ch. 8 discrete pdf worksheet.

A sample of a radioactive isotope emits an average of 27,531 alpha particles over a 1 hour 
period.

A.) Report the estimated emission rate of alpha particles per second, with an estimated
uncertainty.

Let r = number per sec, using 1 hour = 3600 sec.
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(r) 7.6475

r : 27531/3600, numer;(%i63)

r has units number/sec. The average number for the trial time interval selected (1 sec) is 7.6475,
which is λ, and λ is dimensionless.

(λ) 7.6475

λ : %;(%i64)

(%o65) 7.6475

mean_poisson (λ);(%i65)

The uncertainty is taken to be one standard deviation, produced by std_poisson (λ)

(%o66) 2.7654

std_poisson (λ);(%i66)

Rounding off both the mean and the standard deviation to two significant figures, we get
(7.6 +/- 2.8)  particles emitted in the chosen trial time interval of one second.

B.) What is the probability of observing 10 emitted particles during the chosen trial time
interval of one second?

(%o67) 0.089984

pdf_poisson (10, λ), numer;(%i67)

The chance of observing exactly 10 emitted particles in each trial having the same chosen
time interval of one second is about 9%.

C.) You can be 95% confident that the observed count  is less than or equal to what value?

(%o68) 12

quantile_poisson (0.95, λ);(%i68)

(%o69) 0.91183
(%o70) 0.9517
(%o71) 0.97515

cdf_poisson (11, λ);
cdf_poisson (12, λ);
cdf_poisson (13, λ);

(%i71)

We can be 95% confident that the actual count observed will lie in the interval [0, 12].
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Statology 1: Calls per Hour at a Call Center  6.7 

This example is from:
     https://www.statology.org/poisson-distribution-real-life-examples/

"Call centers use the Poisson distribution to model the number of expected calls per hour that 
they’ll receive so they know how many call center reps to keep on staff."

"For example, suppose a given call center receives 10 calls per hour. We can use a Poisson 
distribution  calculator to find the probability that a call center receives 0, 1, 2, 3 … calls in a 
given hour:

P(X = 0 calls) = 0.00005
P(X = 1 call) = 0.00045
P(X = 2 calls) = 0.00227
P(X = 3 calls) = 0.00757
And so on."

"This gives call center managers an idea of how many calls they’re likely to receive per hour 
and enables  them to manage employee schedules based on the number of expected calls."

The chosen trial time period is one hour, there are, say, 8 trials per day, each of one hour, and
the measured average number of calls in the chosen trial time period is 10 calls, each trial (no
matter what time of day) is assumed to experience the same average rate of calls (10 calls/hr)
and to be independent of the other trials' number of calls.

(%o72) 10

mean_poisson (10);(%i72)

To find the probability that a call center receives 0, 1, 2, 3 … calls in a given hour, we can use
pdf_poisson (k, 10):

0  4.54 10−5  

1  4.54 10−4  
2  0.00227  
3  0.0075667  
4  0.018917  
5  0.037833  

for k : 0 thru 5 do print (k, float (pdf_poisson (k, 10)))$(%i73)

The Maxima functions produce the same probabilities as asserted on the Statology 
Examples webpage. P(0) = 0.0000454, P(1) = 0.000454, etc.
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Statology 2: Number of Restaurant Customers per Day  6.8 

https://www.statology.org/poisson-distribution-real-life-examples/

"Restaurants use the Poisson distribution to model the number of expected customers that will 
arrive at the restaurant per day."

"For example, suppose a given restaurant receives an average of 100 customers per day. We 
can use the Poisson distribution calculator to find the probability that the restaurant receives 
more than a certain number of customers:"

"P(X > 110 customers) = 0.14714
P(X > 120 customers) = 0.02267
P(X > 130 customers) = 0.00171
And so on."

"This gives restaurant managers an idea of the likelihood that they’ll receive more than a certain 
number of customers in a given day."

In this problem, the chosen time period is one day, and λ = 100 = average number of customers/day.
P (k <= 110) + P (k > 110) = 1, so P (k > 110) = 1 - P (k <= 110) = 1 - cdf_poisson (110, 100)

(%o74) 0.14714

1 - cdf_poisson (110, 100), numer;(%i74)

About a 15% likelihood the restaurant will receive more than 110 customers on any given day.

110  0.147  
120  0.0227  
130  0.00171  

fpprintprec : 3$
for k: 110 thru 130 step 10 do print(k, 1 - float (cdf_poisson (k, 100)))$

(%i76)

About a 2% likelihood the restaurant will receive more than 120 customers on any given day.

About a 0.2% likelihood the restaurant will receive more than 130 customers in a given day.
A chance of 0.2% means the same as a probability of 0.002 = 2*10^(-3) = 2/ (1000)
 = "2 parts in a thousand."

Statology 3: Number of Website Visitors per Hour  6.9 
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"Website hosting companies use the Poisson distribution to model the number of expected 
visitors per hour that websites will receive."

"For example, suppose a given website receives an average of 20 visitors per hour. We can 
use the Poisson distribution calculator to find the probability that the website receives more 
than a certain number of visitors in a given hour:

P(X > 25 visitors) = 0.11218
P(X > 30 visitors) = 0.01347
P(X > 35 visitors) = 0.00080
And so on."

"This gives hosting companies an idea of how much bandwidth to provide to different websites 
to ensure that they’ll be able to handle a certain number of visitors each hour."

25  0.112  
30  0.0135  

35  8.04 10−4  

for k: 25 thru 35 step 5 do print(k, 1 - float (cdf_poisson (k, 20)))$(%i77)

Statology 4: Number of Bankruptcies Filed per Month  6.10 

"Banks use the Poisson distribution to model the number of expected customer bankruptcies 
per month."

"For example, suppose a given bank has an average of 3 bankruptcies filed by customers 
each month. We can use the Poisson distribution calculator to find the probability that the 
bank receives a specific number of bankruptcy files in a given month:

P(X = 0 bankruptcies) = 0.04979
P(X = 1 bankruptcy) = 0.14936
P(X = 2 bankruptcies) = 0.22404
And so on."

"This gives banks an idea of how much reserve cash to keep on hand in case a certain number 
of bankruptcies occur in a given month."

With an average λ = 3 bankruptcies/month, we can find the probability the given bank will receive  
exactly k bankruptcy files in a given month using pdf_poisson (k, 3).

0  0.0498  
1  0.149  
2  0.224  

for k:0 thru 2 do print (k, float (pdf_poisson (k, 3)) )$(%i78)
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About 5% likelihood the given bank will receive no bankrupty filing in a given month.
About a 15% likelihood the given bank will receive exactly one bankruptcy filing in a given month.

Statology 5: Number of Network Failures per Week  6.11 

"Technology companies use the Poisson distribution to model the number of expected network 
failures per week."

"For example, suppose a given company experiences an average of 1 network failure per week. 
We can use the Poisson distribution calculator to find the probability that the company 
experiences a certain number of network failures in a given week:

P(X = 0 failures) = 0.36788
P(X = 1 failure) = 0.36788
P(X = 2 failures) = 0.18394
And so on."

"This gives the company an idea of how many failures are likely to occur each week."

To find the probability the given company will experience exactly k network failures in a given week, 
we can use pdf_poisson (k, 1).

0  0.368  
1  0.368  
2  0.184  

for k:0 thru 2 do print (k, float (pdf_poisson (k, 1)) )$(%i79)

About 37% likelihood the given company will experience exactly 0 network failures in a 
given week.
About 37% likelihood the given company will experience exactly 1 network failures in a 
given week.
About 18% likelihood the given company will experience exactly 2 network failures in a 
given week.

Number of Beam Particles per Pulse  6.12 

The number of beam particles per pulse is assumed to be Poisson distributed. If it is known 
that the average number of particles per pulse (in a particle accelerator) is 16, what is the 
probability that in a given pulse the number of particles will lie in the interval [12, 20]?

(%o80) 0.741

sum (pdf_poisson (k, 16), k, 12, 20), numer;(%i80)
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The probability the number of beam particles in any particular pulse will lie in the interval 
[12, 20] is 74%.

[RS] Prob. 3.30  6.13 

"Past experience shows that 1% of the lightbulbs produced in a plant are defective. Find the 
probability that more than one bulb is defective in a random sample of 30 bulbs, 
using a.) the binomial distribution and b.) the Poisson distribution.

a.) The binomial distribution is used to find the probability of k 'successes' Pb (k; n, p)
 in n trials of the same experiment when (1) there are only two possible and 
mutually exclusive outcomes, (2) the n trials are independent, and (3) the probability of 
of 'success', p, remains constant in each trial.

Using the binomial distribution, the size of the sample is n = 30 bulbs, for each bulb the probability
of finding it defective (success) is p = 0.01, and we are asked to find P (k > 1), the probability that
more than one bulb in the sample is defective. 
Since P (k > 1) + P (k <= 1) = 1, we have P (k > 1) = 1 - P (k <= 1) = 1 - cdf_binomial (1, n, p).

(%o81) 0.0361

1 - cdf_binomial (1, 30, 0.01);(%i81)

The chance of finding more than one bulb defective in a sample of 30 bulbs for which p = 0.01 is 
the probability of finding any random bulb defective is 3.61%.

b.) "Since n = 30 and p = 0.01, n*p = 0.3 < 5, we can use the Poisson approximation of the 
binomial distribution. Letting λ = n*p, we have to find P (k > 1), where k is the number of defective 
bulbs found.
P (k > 1) = 1 - P (k <= 1) = 1 - cdf_poisson (1, λ) = 1 - cdf_poisson (1, 0.3).

(%o82) 0.0369

1 - cdf_poisson (1, 0.3);(%i82)

The Poisson distribution approximation to the binomial distribution says, in the example, that 
the chance that more than one defective bulb is found (when the average is 0.3) is 3.69%. 
"As n becomes larger (ie., a larger sample), [with p fixed], the Poisson approximation becomes 
even closer to the prediction of the binomial distribution."

Barlow Problem 3.3  6.14 

"During a meteor shower, meteors fall at the rate 15.7 per hour. What is the probability of 
observing less than 5 in a given period of 30 minutes?"
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The average rate of meteors/(30 min) is 15.7/2 = 7.85 = λ.
P (k < 5)  = P(0) + P(1) + P(2) + P(3) + P(4) = cdf_poisson (4, 7.85)

(%o83) 0.109

cdf_poisson (4, 7.85);(%i83)

The chance of observing less than 5 meteors over a random period of 30 minutes is 10.9%.

Barlow Problem 3.4  6.15 

Repeat the previous problem, using the Gaussian approximation to the Poisson.

Physicists usually call the continuous Normal distribution the "Gaussian distribution". We discuss 
the Normal distribution in Stat04-Normal.wxmx. pdf_normal (x, m, s) can sometimes be a useful 
continuous approximation to a Poisson distribution pdf_poisson (k, λ) if m = λ and s = sqrt(λ). 
Likewise cdf_normal (x, m, s) as an approximation to cdf_poisson (k, λ).

Since λ = 7.85 and sqrt (λ) = 2.802, 

(%o84) 0.0847

cdf_normal (4, 7.85, 2.802), numer;(%i84)

which implies a 8.47% chance rather than 10.9% chance.

Barlow Problem 3.5  6.16 

A student is trying to hitch a lift. Cars pass at random intervals, at an average rate of 1 per minute. 
The chance of a car giving a lift is 1%. What is the chance that the student will still be 
waiting: (a) after 60 cars have passed? (b) after 1 hour?

a.) The probability each passing car will turn into a lift (success) is p = 0.01.
The probability of k = 0 successful events after n = 60 trials with the probability of success p
in a given trial is pdf_binomial (0, n, p ) = pdf_binomial (0, 60, 0.01).

(%o85) 0.547

pdf_binomial (0, 60, 0.01);(%i85)

The chance the student will still be waiting after 60 cars have passed is 54.7%.

For 60 cars, each with a probability (1 - p) =  0.99 of not giving a lift, the binomial formula gives
a probability of no lift after 60 cars = Pb (0, 60, 0.01) = (0 - 0.01)^60 =  (0.99)^60 = 0.547.
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(%o86) 0.547

0.99^60;(%i86)

b.) The average number of cars/hour is 60 cars/hour. The average number of lift-giving cars per
hour is 0.01*60 cars/hour  = 0.6 cars/hour. pdf_poisson (0, 0.6) = probabilty 0 lift-giving cars
appear in one hour.

(%o87) 0.549

pdf_poisson (0, 0.6);(%i87)

The chance the student will still be waiting for a lift after one hour is 54.9%.

"Please get the important difference between the two situations clear, and understand why the 
two different formulae are applied. Once you understand this, you are on the way to becoming a 
statistics expert."

random_poisson (λ),  random_poisson (λ, n)  6.17 

The Maxima function random_poisson (λ) returns a Poisson(λ) random variate, with λ>0.
The parameter λ is the requested average (mean) value of the distribution.

1  17  
2  16  
3  22  
4  13  
5  15  

for j thru 5 do print (j, random_poisson (15))$(%i88)

The Maxima function random_poisson (λ, m) returns a list of m Poisson distributed random 
integers, where λ is the average ( mean) of the distribution.

Random Sample Size m = 10 Simulations, λ = 15  6.17.1 

(rsample) [ 13 ,14 ,20 ,12 ,12 ,17 ,12 ,11 ,14 ,21 ]

rsample : random_poisson (15, 10);(%i89)

Random Sample Size m = 100 Simulations, λ = 15  6.17.2 

We expect to get more integer repetitions in the returned list of values if we use 
random_poisson (15, 100), which returns a list of 100 integers.
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(%o91) [ 7 ,12 ,100 ]
(%o92) [ 7 ,12 ,13 ]
(%o93) [ 7 ,15 ,12 ]

rsample : random_poisson (15, 100)$
fll (rsample);
head (rsample);
tail (rsample);

(%i93)

(%o94) 100

length (rsample);(%i94)

discrete_freq (data)   6.17.3 

The Maxima function discrete_freq( aList) counts the number of unique discrete "readings" 
of some instrument recorded in the list aList and returns a new list: 

         [ list-of-unique-readings, list-of-frequency-of-each-unique-reading].

The elements of the list 'frequencies' (in the following) corresponds to the elements of the 
list 'uniqueData', element by element. 

(%o96) [ 7 ,8 ,9 ,11 ,12 ,13 ,14 ,15 ,16 ,17 ,18 ,19 ,20 ,21 ,24 ,25 ,26 ]
(%o97) [ 2 ,1 ,5 ,8 ,10 ,15 ,11 ,10 ,8 ,9 ,7 ,6 ,2 ,3 ,1 ,1 ,1 ]

[uniqueData, frequencies] : discrete_freq (rsample)$
uniqueData;
frequencies;

(%i97)

(%o98) 17
(%o99) 17

length (uniqueData);
length (frequencies);

(%i99)

(%o100) [ 7 ,26 ]

[first (uniqueData), last (uniqueData)];(%i100)

If we add the integers in the list 'frequencies, we will get 100, since rsample has 100 elements,
and each of the 100 elements (an integer) will contribute unity to one of the uniqueData 
elements.

(%o101) 100

Lsum (frequencies);(%i101)
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Let nfrequencies be a list of "normalized" frequencies (so the sum of the elements of
nfrequencies equals 1 (we need the sum of the probabilities to equal 1).

(nfrequencies) [ 0.02 ,0.01 ,0.05 ,0.08 ,0.1 ,0.15 ,0.11 ,0.1 ,0.08 ,0.09 ,0.07 ,0.06 ,0.02 ,
0.03 ,0.01 ,0.01 ,0.01 ]

(%o103) 1.0

nfrequencies : frequencies/100.0;
Lsum (nfrequencies);

(%i103)

What is the largest element of the list nfrequencies?

(%o104) 0.15

lmax (nfrequencies);(%i104)

To make  a plot of probabilities (vertical axis) versus number of events in time interval 
(horizontal axis), we let mypoints be a list of length (uniqueData) sublists, with each sublist 
containing [x, y] =   [number of events in time interval, the corresponding probability] 
         =  [uniqueData[j], nfrequencies[j] ]
based on the m = 100 simulations.

(%o106) [ [ 7 ,0.02 ] , [ 26 ,0.01 ] ,17 ]
(%o107) [ [ 7 ,0.02 ] , [ 8 ,0.01 ] , [ 9 ,0.05 ] ]
(%o108) [ [ 24 ,0.01 ] , [ 25 ,0.01 ] , [ 26 ,0.01 ] ]

mypoints : makelist ([ uniqueData[j], nfrequencies [j] ], j, 1, length (uniqueData))$
fll (mypoints);
head (mypoints);
tail (mypoints);

(%i108)
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(%t109) 

wxdraw2d ( xrange = [5, 25], yrange = [0, 0.15], points_joined = impulses,
    xlabel = "number of events in time interval", ylabel = "probability", grid = true,
    title = "Probabilities based on random poisson (15, 100)",
    background_color = light_gray,
    line_width = 2, color = red, points (mypoints),
    color = black, line_width = 1, key = "pdf poisson (x, 15)",
      explicit (pdf_poisson (x, 15), x, 5, 25))$

(%i109)

When you run this script on your own, your probabilities (vertical axis) will be slightly different, 
and you can change the vertical range yrange in draw2d, if needed, to see all your points clearly.
You can also change the xrange values based on the first and last elements of uniqueData.

Random Sample Size m = 1000 Simulations, λ = 15  6.17.4 

We expect to get more integer repetitions in the returned list of values if we use 
random_poisson (15, 1000), which returns a list of 1000 integers.

(%o111) [ 9 ,9 ,1000 ]
(%o112) [ 9 ,18 ,13 ]
(%o113) [ 11 ,10 ,9 ]

rsample : random_poisson (15, 1000)$
fll (rsample);
head (rsample);
tail (rsample);

(%i113)
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(%o115) [ 5 ,6 ,7 ,8 ,9 ,10 ,11 ,12 ,13 ,14 ,15 ,16 ,17 ,18 ,19 ,20 ,21 ,22 ,23 ,24 ,25 ,
26 ,28 ,29 ,31 ]

(%o116) [ 1 ,4 ,11 ,14 ,38 ,46 ,68 ,100 ,96 ,99 ,97 ,94 ,83 ,72 ,62 ,31 ,32 ,18 ,13 ,6

,6 ,5 ,1 ,2 ,1 ]

[uniqueData, frequencies] : discrete_freq (rsample)$
uniqueData;
frequencies;

(%i116)

(%o117) 25
(%o118) 25

length (uniqueData);
length (frequencies);

(%i118)

(%o119) [ 5 ,31 ]

[first (uniqueData), last (uniqueData)];(%i119)

If we add the integers in the list 'frequencies, we will get 1000, since rsample has 1000 
elements, and each of the 1000 elements (an integer) will contribute unity to one of the 
uniqueData elements.

(%o120) 1000

Lsum (frequencies);(%i120)

Let nfrequencies be a list of "normalized" frequencies (so the sum of the elements of
nfrequencies equals 1 (we need the sum of the probabilities to equal 1).

(nfrequencies) [ 0.001 ,0.004 ,0.011 ,0.014 ,0.038 ,0.046 ,0.068 ,0.1 ,0.096 ,0.099 ,
0.097 ,0.094 ,0.083 ,0.072 ,0.062 ,0.031 ,0.032 ,0.018 ,0.013 ,0.006 ,0.006 ,
0.005 ,0.001 ,0.002 ,0.001 ]

nfrequencies : frequencies/1000.0;(%i121)

(%o122) 1.0

Lsum (nfrequencies );(%i122)

What is the largest element of the list nfrequencies?

(%o123) 0.1

lmax (nfrequencies);(%i123)
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To make  a plot of probabilities (vertical axis) versus number of events in the time interval 
(horizontal axis), we let mypoints be a list of length (uniqueData) sublists, with each sublist 
containing [x, y] =   [number of events in the time interval, the corresponding probability] 
         =  [uniqueData[j], nfrequencies[j] ]
based on the m = 100 simulations.

(%o125) [ [ 5 ,0.001 ] , [ 31 ,0.001 ] ,25 ]
(%o126) [ [ 5 ,0.001 ] , [ 6 ,0.004 ] , [ 7 ,0.011 ] ]
(%o127) [ [ 28 ,0.001 ] , [ 29 ,0.002 ] , [ 31 ,0.001 ] ]

mypoints : makelist ([ uniqueData[j], nfrequencies [j] ], j, 1, length (uniqueData))$
fll (mypoints);
head (mypoints);
tail (mypoints);

(%i127)

(%t128) 

wxdraw2d ( xrange = [0, 35], yrange = [0, 0.12], points_joined = impulses,
    xlabel = "number of events in time interval", ylabel = "probability", grid = true,
    title = "Probabilities based on random poisson (15, 1000)",
    background_color = light_gray,
    line_width = 2, color = red, points (mypoints),
    color = black, line_width = 1, key = "pdf poisson (x, 15)",
      explicit (pdf_poisson (x, 15), x, 0, 35))$

(%i128)

With a sample size 1000 we get a closer fit to pdf_poisson (n, 15).


